17+x=57.
So, subtract 17 from both sides
X=40
Answer:
The distribution will be approximately normal, with mean 350,000 and standard deviation 25,298.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Population:
Suppose the selling price of homes is skewed right with a mean of 350,000 and a standard deviation of 160000
Sample of 40
Shape approximately normal
Mean 350000
Standard deviation 
The distribution will be approximately normal, with mean 350,000 and standard deviation 25,298.
Answer:
D) 3.28
Step-by-step explanation:
820/x=100/2.5
(820/x)*x=(100/2.5)*x - we multiply both sides of the equation by x
820=40*x - we divide both sides of the equation by (40) to get x
820/40=x
20.5=x
x=20.5
now we have:
2.5% of 820=20.5
The nearest 100 of 87682?
The answer is 600