Answer:
it is 6/7, you can simplify that fraction by dividing with 7
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
<h3>How to apply translations on a given function</h3>
<em>Rigid</em> transformations are transformation such that the <em>Euclidean</em> distance of every point of a function is conserved. Translations are a kind of <em>rigid</em> transformations and there are two basic forms of translations:
Horizontal translation
g(x) = f(x - k), k ∈
(1)
Where the translation goes <em>rightwards</em> for k > 0.
Vertical translation
g(x) = f(x) + k, k ∈
(2)
Where the translation goes <em>upwards</em> for k > 0.
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
To learn more on translations: brainly.com/question/17485121
#SPJ1
Answer:16
Step-by-step explanation:
Well, you could assign a letter to each piece of luggage like so...
A, B, C, D, E, F, G
What you could then do is set it against a table (a configuration table to be precise) with the same letters, and repeat the process again. If the order of these pieces of luggage also has to be taken into account, you'll end up with more configurations.
My answer and workings are below...
35 arrangements without order taken into consideration, because there are 35 ways in which to select 3 objects from the 7 objects.
210 arrangements (35 x 6) when order is taken into consideration.
*There are 6 ways to configure 3 letters.
Alternative way to solve the problem...
Produce Pascal's triangle. If you want to know how many ways in which you can choose 3 objects from 7, select (7 3) in Pascal's triangle which is equal to 35. Now, there are 6 ways in which to configure 3 objects if you are concerned about order.