Answer:
a. 2.5..... I believe but you should get other answers
3x + 14 = 143
3x = 129
X = 43
Answer:
The correct answer is D. AB ≅ WX
Step-by-step explanation:
No other choice involves a pair of congruent/similar lines. If the figure is rotated clockwise, you could transpose one over the other and AB would overlay WX exactly.
9514 1404 393
Answer:
66 m
Step-by-step explanation:
The perimeter is the sum of the measures of <em>all</em> of the sides. There are two side measures that are missing from the diagram.
The missing horizontal measure is ...
17 m - 8 m = 9 m
The missing vertical measure is ...
16m -7 m = 9 m.
If you add these to the sum you already calculated, you will get the correct answer:
48 m + 9 m + 9 m = 66 m . . . perimeter of the figure
_____
If you're paying attention, you see that the sum of the measures of the two shorter horizontal segments is the same as the measure of the longer horizontal segment. Likewise, the sum of the measurements of the two shorter vertical segments is the same as that of the longer vertical segment.
In other words, the perimeter of this (and any) L-shaped figure is the same as the perimeter of a rectangle having the same horizontal and vertical dimensions as the long sides of the figure.
P = 2(17 m +16 m) = 2(33 m) = 66 m
Basically, you have two circles. You are asked to take circle 1 and "move it" so that it is on top of circle 2. This process of moving is called a translation and can be thought of as sliding. You do this by ensuring that the two have the same center. So, starting at (-4,5) how do you have to move to end up at (2,1)?
To do this we need to move right 6 as the x-coordinate goes from -4 to 2. We also need to move down 4 as the y-coordinate goes from 5 to 1. So we add 6 to the x-coordinate and subtract 4 from the y-coordinate. The transformation rule is (x+6, y-4).
Once you do this the circles have the same center. Next you wish to dilate circle 1 so it ends up being the same size at circle 2. That means you stretch it out in such a way that it keeps its shape. Circle 1 has a radius of 2 centimeters and circle 2 has a radius of 6 centimeters. That is 3x bigger. So we dilate by a factor of 3.
Translations and dilations (along with reflections and rotations) belong to a group known as transformations.