D. 1/4
Explanation:
a perfect square is written in the form
(1)
In our problem, we have this perfect square:
(2)
with C being unknown. However, by comparing (1) and (2), we know that

So, we find

and therefore, the missing term must be

so the complete square is

You can use SAS since you know one pair of sides are congruent and AC splits them so those must make those sides equal. And since those sides, DC and BC, are congruent, the angles must be as well. You can use numbers to prove the angles of D and B or just use that when 2 sides and an angle are congruent, the 3rd side must be congruent.
Part A;
There are many system of inequalities that can be created such that only contain points D and E in the overlapping shaded regions.
Any system of inequalities which is satisfied by (-4, 2) and (-1, 5) but is not satisfied by (1, 3), (3, 1), (3, -3) and (-3, -3) can serve.
An example of such system of equation is
x < 0
y > 0
The system of equation above represent all the points in the second quadrant of the coordinate system.The area above the x-axis and to the left of the y-axis is shaded.
Part B:It can be verified that points D and E are solutions to the system of inequalities above by substituting the coordinates of points D and E into the system of equations and see whether they are true.
Substituting D(-4, 2) into the system
we have:
-4 < 0
2 > 0
as can be seen the two inequalities above are true, hence point D is a solution to the set of inequalities.
Also, substituting E(-1, 5) into the system we have:
-1 < 0
5 > 0
as can be seen the two inequalities above are true, hence point E is a solution to the set of inequalities.
Part C:Given that chicken can only be raised in the area defined by y > 3x - 4.
To identify the farms in which chicken can be raised, we substitute the coordinates of the points A to F into the inequality defining chicken's area.
For point A(1, 3): 3 > 3(1) - 4 ⇒ 3 > 3 - 4 ⇒ 3 > -1 which is true
For point B(3, 1): 1 > 3(3) - 4 ⇒ 1 > 9 - 4 ⇒ 1 > 5 which is false
For point C(3, -3): -3 > 3(3) - 4 ⇒ -3 > 9 - 4 ⇒ -3 > 5 which is false
For point D(-4, 2): 2 > 3(-4) - 4; 2 > -12 - 4 ⇒ 2 > -16 which is true
For point E(-1, 5): 5 > 3(-1) - 4 ⇒ 5 > -3 - 4 ⇒ 5 > -7 which is true
For point F(-3, -3): -3 > 3(-3) - 4 ⇒ -3 > -9 - 4 ⇒ -3 > -13 which is true
Therefore, the farms in which chicken can be raised are the farms at point A, D, E and F.