Answer: All of these statements are true
Explanation:
Melting point help us to determine if a mixture is pure or has impurities by the virtues of it melting range..
<span>To solve this problem, You need to look up a picture/diagram of the electromagnetic spectrum. This will have the wave regions listed as well</span> as frequencies and wavelength.
Wavelength is distance/length of one wave, which can be calculated using frequency (hz = s^-1) and the speed of light.
2.998 x 10^8 m/s ÷ 3 x 10^19 s^-1 = 9.99 x 10^-12 m
The Frequency given falls in between X-rays and Gamma rays. The wavelength however; is in the Gama ray region.
Oxidation is the loss of electrons and corresponds to an increase in oxidation state. Reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half reaction is the same as the number of electrons consumed in the reduction half-reaction.
Answer:
The fractional saturation for hemoglobin is 0.86
Explanation:
The fractional saturation for hemoglobin can be calculated using the formula

Where
is the fractional oxygen saturation
is the partial pressure of oxygen
is the partial pressure when 50% hemoglobin is saturated with oxygen
and h is the Hill coefficient
From the question,
= 40 mm Hg
= 22 mm Hg
h = 3
Putting these values into the equation, we get





Hence, the fractional saturation for hemoglobin is 0.86.