Step-by-step explanation:
Hi there!
To find slope you use the change of y over change of x formula. You first need to ordered pairs to plug into the equation.
Formula:
(Y1-Y2)/(X1-X2)
Answer:
B) 13/8
Step-by-step explanation:
First we need to understand what a terminating decimal is: It is a decimal that has a finite number of decimal values that are not zero, meaning that its decimal values end at some point
Let's go through our possible answers with trial and error:
A) 8/9
8/9 = 0.888888888888...9 (Incorrect)
B) 13/8
13/8 = 1.625 (Correct)
C) 4/3
4/3 = 1.3333333333...4 (Incorrect)
D) 6/11
6/11 = 0.545454545454...54 (Incorrect
13/8 is our answer because in decimal form it is a terminating decimal.
Respuesta:
0,9 veces
Explicación paso a paso:
Deje que la cantidad en la cuenta de Martha se denote como x, que es la cantidad en la cuenta = x
Porcentaje retirado para transporte = 10%
El porcentaje total siempre será del 100%
Por lo tanto, si se retira el 10%, entonces; el porcentaje restante es:
Porcentaje total: porcentaje gastado en transporte
(100% - 10%) * monto en cuenta
90% * x = 0,9 * x = 0,9x
Saldo de cuenta nueva = 0.9x
Answer:
See the proof below.
Step-by-step explanation:
Assuming this complete question: "For each given p, let Z have a binomial distribution with parameters p and N. Suppose that N is itself binomially distributed with parameters q and M. Formulate Z as a random sum and show that Z has a binomial distribution with parameters pq and M."
Solution to the problem
For this case we can assume that we have N independent variables
with the following distribution:
bernoulli on this case with probability of success p, and all the N variables are independent distributed. We can define the random variable Z like this:
From the info given we know that
We need to proof that
by the definition of binomial random variable then we need to show that:


The deduction is based on the definition of independent random variables, we can do this:

And for the variance of Z we can do this:
![Var(Z)_ = E(N) Var(X) + Var (N) [E(X)]^2](https://tex.z-dn.net/?f=%20Var%28Z%29_%20%3D%20E%28N%29%20Var%28X%29%20%2B%20Var%20%28N%29%20%5BE%28X%29%5D%5E2%20)
![Var(Z) =Mpq [p(1-p)] + Mq(1-q) p^2](https://tex.z-dn.net/?f=%20Var%28Z%29%20%3DMpq%20%5Bp%281-p%29%5D%20%2B%20Mq%281-q%29%20p%5E2)
And if we take common factor
we got:
![Var(Z) =Mpq [(1-p) + (1-q)p]= Mpq[1-p +p-pq]= Mpq[1-pq]](https://tex.z-dn.net/?f=%20Var%28Z%29%20%3DMpq%20%5B%281-p%29%20%2B%20%281-q%29p%5D%3D%20Mpq%5B1-p%20%2Bp-pq%5D%3D%20Mpq%5B1-pq%5D)
And as we can see then we can conclude that 