Answer:
Step-by-step explanation:
Answer:
(s-6)/r
option D
Step-by-step explanation:
The slope-intercept form a line is y=mx+b where m is the slope and b is the y-intercept.
Compare y=mx+b and y=cx+6, we see that m=c and c is the slope.
Now we are also given that (r,s) is on our line which means s=c(r)+6.
We need to solve this for c to put c in terms of r and s as desired.
s=cr+6
Subtract 6 on both sides:
s-6=cr
Divide both sides by r:
(s-6)/r=c
The slope in terms of r and s is:
(s-6)/r.
Answer:
We conclude that the population mean is 24.
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 24
Sample mean,
= 22.8
Sample size, n = 100
Alpha, α = 0.05
Sample standard deviation, s = 8.3
First, we design the null and the alternate hypothesis
We use Two-tailed z test to perform this hypothesis.
Formula:
Putting all the values, we have
We calculate the p-value with the help of standard z table.
P-value = 0.1498
Since the p-value is greater than the significance level, we accept the null hypothesis. The population mean is 24.
Now,
Since, the z-statistic lies in the acceptance region which is from -1.96 to +1.96, we accept the null hypothesis and conclude that the population mean is 24.
Answer:
C. Decreases the margin of error and hence increases the precision
Step-by-step explanation:
If we select a sample by Simple Random Sampling in a population of “infinite” size (a population so large that we do not know its size exactly), then the margin of error is given by
where
<em>Z = The Z-score corresponding to the confidence level
</em>
<em>S = The estimated standard deviation of the population
</em>
<em>n = the size of the sample.
</em>
As we can see, since n is in the denominator of the fraction and the numerator is kept constant, the larger the sample size the smaller the margin of error, so the correct choice is:
C. Decreases the margin of error and hence increases the precision
Finance charge
(5,834.53−150)×(0.204÷12)=96.64
New balance
5,834.53−150+96.64+325
=6,106.17