D
there is always a 1 infront of a variable but since x2 has the largest degree it gives it priority over the others so what ever numbe in front of it is the leading coefficient
_________X=30____
_________-________
Answer:
9. m(YZ) = 102°
10. m(JKL) = 192°
11. m<GHF = 75°
Step-by-step explanation:
9. First, find the value of x
4x + 3 = 3x + 15 (inscribed angle that are subtended by the same arc are equal based on the inscribed angle theorem)
Collect like terms
4x - 3x = -3 + 15
x = 12
4x + 3 = ½(m(YZ)) (inscribed angle of a circle = ½ the measure of the intercepted arc)
Plug in the value of x
4(12) + 3 = ½(m(YZ))
48 + 3 = ½(m(YZ))
51 = ½(m(YZ))
Multiply both sides by 2
51*2 = m(YZ)
102 = m(YZ)
m(YZ) = 102°
10. First, find the value of x.
7x + 5 + 6x + 6 = 180° (opposite angles in an inscribed quadrilateral are supplementary)
Add like terms
13x + 11 = 180
13x = 180 - 11
13x = 169
x = 169/13
x = 13
7x + 5 = ½(m(JKL)) (inscribed angle of a circle = ½ the measure of the intercepted arc)
Plug in the value of x
7(13) + 5 = ½(m(JKL))
96 = ½(m(JKL))
Multiply both sides by 2
2*96 = m(JKL)
m(JKL) = 192°
11. First, find x.
5x + 15 = ½(11x + 18) (inscribed angle of a circle = ½ the measure of the intercepted arc)
Multiply both sides by 2
2(5x + 15) = 11x + 18
10x + 30 = 11x + 18
Collect like terms
10x - 11x = -30 + 18
-x = -12
Divide both sides by -1
x = 12
m<GHF = 5x + 15
Plug in the value of x
m<GHF = 5(12) + 15
m<GHF = 60 + 15
m<GHF = 75°
Only x-intercept because if you want to know about x-intercepts so y will be zero (y=0)
then 0 =4x^2 -12x + 9
0=(2x-3)(2x-3)
0=2x-3
so x=3/2 that is x-intercept
Answer:
The probability that the maximum speed is at most 49 km/h is 0.8340.
Step-by-step explanation:
Let the random variable<em> </em><em>X</em> be defined as the maximum speed of a moped.
The random variable <em>X</em> is Normally distributed with mean, <em>μ</em> = 46.8 km/h and standard deviation, <em>σ</em> = 1.75 km/h.
To compute the probability of a Normally distributed random variable we first need to convert the raw score of the random variable to a standardized or <em>z</em>-score.
The formula to convert <em>X</em> into <em>z</em>-score is:

Compute the probability that the maximum speed is at most 49 km/h as follows:
Apply continuity correction:
P (X ≤ 49) = P (X < 49 - 0.50)
= P (X < 48.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that the maximum speed is at most 49 km/h is 0.8340.