Answer:
The answer is THEORY! Hope it helps!
Answer:

Explanation:
We will need an equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 315.46 76.12
Ba(OH)₂·8H₂O + 2NH₄SCN ⟶ Ba(SCN)₂ + 2NH₃ + 10H₂O
m/g: 6.5
1. Moles of Ba(OH)₂·8H₂O

2. Moles of NH₄SCN
The molar ratio is 2 mol NH₄SCN:1 mol Ba(OH)₂·8H₂O

3. Mass of NH₄SCN

Answer:
Keq = [CO₂]/[O₂]
Explanation:
Step 1: Write the balanced equation for the reaction at equilibrium
C(s) + O₂(g) ⇄ CO₂(g)
Step 2: Write the expression for the equilibrium constant (Keq)
The equilibrium constant is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species. The equilibrium constant for the given system is:
Keq = [CO₂]/[O₂]
These are three questions and three complete answers
Answer:
a) Cr²⁺: [Ar] 4s² 3d²
b) Cu²⁺: [Ar] 4s² 3d⁷
c) Co³⁺: [Ar] 4s² 3d⁴
Explanation:
<u>a) Cr²⁺</u>
- Number of elecrons of the neutral atom: 24
- Number of electrons of the ion: 24 - charge = 24 - 2 = 22.
Fill the orbitals in increasing order of energy. Using Aufbau's rules the order is: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ .....
Hence, for 22 electrons you get:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d²
- Abbreviated notation: since the last complete level is the number 3s² 3p⁶, you use the noble gas of the period 3, which is Ar, and the configuration is:
[Ar] 4s² 3d²
<u>b) Cu²⁺</u>
- Number of elecrons of the neutral atom: 29
- Number of electrons of the ion: 29 - charge = 29 - 2 = 27.
Fill the orbitals in increasing order of energy. Using Aufbau's rules the order is: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ .....
Hence, for 27 electrons you get:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
- Abbreviated notation: since the last complete level is the number 3s² 3p⁶, you use the noble gas of the period 3, which is Ar, and the configuration is:
[Ar] 4s² 3d⁷
<u>c) Co³⁺</u>
- Number of elecrons of the neutral atom: 27
- Number of electrons of the ion: 27 - charge = 27 - 3 = 24.
Fill the orbitals in increasing order of energy. Using Aufbau's rules the order is: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ .....
Hence, for 24 electrons you get:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁴
- Abbreviated notation: since the last complete level is the number 3s² 3p⁶, you use the noble gas of the period 3, which is Ar, and the configuration is:
[Ar] 4s² 3d⁴
1) The gold will occupy a volume of 2.99 dm³.

2) The density of the olive oil is 0.850 g/cm³.

3) The mass of the silver is 10.4 kg.
