An atom of strontium-90 contains how many electrons, protons, and neutrons?
38e⁻, 38 protons, and 52 neutrons
The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
Answer:
1-(tert-butoxy)-2-methylpropane
Note: there is a mistake in formula, the correct formula is (CH₃)₂-CH-CH₂-O-C(CH₃)₃ not (CH₃)₂-CH-CH₂-O(CH₃)₃, because oxygen is a divalent compound.
Explanation:
<em>Structural formula is attached</em>
IUPAC naming rules
1. start numbering the chain from the functional group. In this compound we start from oxygen side.
2. Here we can see that at position 1 there is an oxy group along with a tertiary carbon having three methyl groups. So we write it as 1-tert-butoxy. Which means that there is a methoxy group at position 1 along with a tertiary carbon.
3. At position 2 we can see that there is a methyl group attached to the main chain, so we write it as 2-methyl.
4. Now we count the total number of carbons in the main chain. As we can see that there are 3 carbons in the remaining or parent chain, so we write it as propane
5. So the IUPAC name of the compound will be 1-(tert-butoxy)-2-methylpropane
The correct answers are options C, that is, silver tarnishes and becomes black when exposed to oxygen, and option E, that is, diesel fuel burns when it is heated.
Chemical changes refer to the modifications in which the chemistry at molecular level is modified as the initial substance gets transformed into a new and different final substance. This change occurs with the dissociation of old bond and production of new bonds respectively.
Silver gets tarnished and becomes black when exposed to oxygen. This refers to a chemical change as silver a white and lustrous substance gets transformed into a tarnish black final substance. However, silver does not easily react with oxygen at usual circumstances. It easily reacts with sulfur comprising components in the air and generates black compound as Ag₂S.
Burning of diesel fuel when it is heated. Diesel refers to a mixture of hydrocarbons varying approximately from C₁₀H₂₀ to C₁₅H₂₈. When these hydrocarbons get burnt they generate novel substances, that is, carbon dioxide and water. Hence, it is also a chemical reaction.
Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive. Since soft nucleophiles are less strongly solvated than hard nucleophiles, these solvents boost the relative reactivity of soft anions.
<h3>
Ethanol is either a nucleophile or a base.</h3>
The ethanol is a base Because carbocation is an extremely reactive species, a base or nucleophile as weak as ethanol can replace or remove it. SN1 and E1 would not be conceivable without the carbocation or a strong departing group.
<h3>How do solvents impact anionic nucleophile's reactivity?</h3>
In polar aprotic solvents, nucleophilic substitution reactions of anionic nucleophiles often proceed more quickly. The normal relative reactivity order in such solvents (like DMSO)is Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive.
Learn more about nucleophiles here:-
brainly.com/question/27127109
#SPJ4