First, let's start off by finding the mass of this whole hydrate.
(Note: the unit of measurement for mass will be amu)
Let's find the molecular mass of each element.




Now, let's find the mass of each compound.


We have 6 molecules of H2O, so multiply 18.015 by 6 then add that with the weight of CoCl2.


Now divide 108.09 (mass of all the H2O in the hydrate) by 237.923 (total mass of hydrate).


Turn that into a percentage and you get 45.431%.
Hope this helps! :)
<span>A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol.
</span>Q1)
Empirical formula is the simplest ratio of whole numbers of components making up a compound.
the percentages have been given, therefore we can calculate for 100 g of the compound.
C H O
Mass in 100 g 40.0 g 6.7 g 53.5 g
Molar mass 12 g/mol 1 g/mol 16 g/mol
Number of moles 40.0/12= 3.33 6.7/1 = 6.7 53.5/16 = 3.34
Divide by the least number of moles
3.33/3.33 = 1 6.7/3.33 = 2.01 3.34/3.33 = 1.00
after rounding off
C - 1
H - 2
O - 1
Empirical formula - CH₂O
Q2)
Molecular formula is the actual number of components making up the compound.
To find the number of empirical units we have to find the mass of one empirical unit.
Mass of one empirical unit = CH₂O - 12 + (1x2) + 16 = 30 g
Mass of one mole of compound = 60 g
Number of empirical units = 60 g / 30 g = 2
Therefore molecular formula - 2(CH₂O)
Molecular formula - C₂H₄O₂
The amount of precipitate produced will be proportional to the amount of NH₃ reacted with water to produce NH₄OH.
<h3>What is precipitate?</h3>
Precipitates are the crystal type formation, when the solute is no more dissolving in the solvent.
Imagine mixing 1 tablespoon of Epsom salt with 2 cups of ammonia, the reaction is
2NH₃ + MgSO₄ + 2H₂O → Mg(OH)₂ + (NH₄)₂SO₄
The amount of precipitate produced will be proportional to the amount of NH₃ reacted with water to produce NH₄OH.
Learn more about precipitate.
brainly.com/question/18109776
#SPJ1
If we have 6.68% NaClO, it is the same as saying--> 6.68 grams NaClO= 100 mL of solution. we can use this as a conversion.
800. mL (6.68 mL/ 100 mL)= 53.4 mL
solution = solute + solvent
solute= NaClO
solvent= H2O
solvent= 800-53.4= 747 mL of H2O
so, we you need 53.4 mL of NaClO and 747 mL of water or 53.4 grams of NaClO and 747 mL of water
This
can be solved using Dalton's Law of Partial pressures. This law states that the
total pressure exerted by a gas mixture is equal to the sum of the partial
pressure of each gas in the mixture as if it exist alone in a container. In
order to solve, we need the partial pressures of the gases given. Calculations
are as follows:<span>
<span>P = 3.00 atm + 1.80 atm + 0.29 atm + 0.18 atm + 0.10 atm</span></span>
<span><span>P = 5.37 atm</span></span>