Answer:
1) 
2) ![\sqrt[3]{-1331}=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%3D-11)
3) Evaluating
we get 
4) 
5) 
Step-by-step explanation:
1) 
Prime factors of 1225 : 5x5x7x7
Prime factors of 1024: 2x2x2x2x2x2x2x2x2x2


2) ![\sqrt[3]{-1331}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D)
We know that ![\sqrt[n]{-x}=-\sqrt[n]{x} \ ( \ if \ n \ is \ odd)](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7B-x%7D%3D-%5Csqrt%5Bn%5D%7Bx%7D%20%5C%20%28%20%5C%20if%20%5C%20n%20%5C%20is%20%5C%20odd%29)
Applying radical rule:
![\sqrt[3]{-1331}\\=-\sqrt[3]{1331} \\=-\sqrt[3]{11\times\11\times11}\\=-\sqrt[3]{11^3} \\Using \ \sqrt[n]{x^n}=x \\=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%5C%5C%3D-%5Csqrt%5B3%5D%7B1331%7D%20%5C%5C%3D-%5Csqrt%5B3%5D%7B11%5Ctimes%5C11%5Ctimes11%7D%5C%5C%3D-%5Csqrt%5B3%5D%7B11%5E3%7D%20%5C%5CUsing%20%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%3D-11)
So, ![\sqrt[3]{-1331}=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%3D-11)
3) 
It can be written as:

Evaluating
we get 
4) 
Put value of x, y and z in equation and solve:

So, 
5) 
We know (-a)^n = (a)^n when n is even and (-a)^n = (-a)^n when n is odd

So, 
The factors of the quadratic equation is (x + 1) and (x - 6)
Given,
The quadratic equation; -2x² + 10x + 12
We have to find the factors of this equation using quadratic formula;-
Quadratic formula;- 
Here,
a = -2, b = 10 and c = 12
Now,
=
=
= (-10±14) ÷ -4
Solve for,
- 10 + 14 / -4 = -4/4 = -1
That is, (x + 1)
Solve for,
- 10 - 14 / -4 = -24/-4 = 6
That is, (x - 6)
Therefore, the factors for the given quadratic equation is (x + 1) and (x - 6)
Learn more about quadratic formula here;
brainly.com/question/9300679
#SPJ1
Hello!
1. 8y = 48 => y = 48 : 8 => y = 6
2. q - 12 = 1 => q = 1 + 12 => q = 13
3. 18 = a/2 => a = 18 × 2 => a = 36
4. r/3 = 7 => r = 3 × 7 => r = 21
5. 11 = m - 4 => m = 11 + 4 => m = 15
Good luck! :)
Answer:
after reflection over y axis
a 9,7
b 9,6
c 0,6
d 0,7