Answer:
20
Step-by-step explanation:
To get the answer, you have to find what number 15 is 75 percent of.
Answer: No
Step-by-step explanation:-
Labeled diameter on the bolt = 0.35 inch
The observed diameter of the bolt= 0.33 inch
![{\text {Percentage Error}}=|\frac{\text {labeled value}-{Observed value}}{\text {Observed value}}|\times 100\%](https://tex.z-dn.net/?f=%7B%5Ctext%20%7BPercentage%20Error%7D%7D%3D%7C%5Cfrac%7B%5Ctext%20%7Blabeled%20value%7D-%7BObserved%20value%7D%7D%7B%5Ctext%20%7BObserved%20value%7D%7D%7C%5Ctimes%20100%5C%25)
![{\text{Percentage Error}=|\frac{0.35-0.33}{0.33}|\times 100\%=6.06\%](https://tex.z-dn.net/?f=%7B%5Ctext%7BPercentage%20Error%7D%3D%7C%5Cfrac%7B0.35-0.33%7D%7B0.33%7D%7C%5Ctimes%20100%5C%25%3D6.06%5C%25)
For the bolt to be in the package, the percent error must be less than 5%. As the percent error is 6.06% which is greater than 5%, the bolt cannot be in the package.
Squares : Triangles
3 : 12
Divide both sides by 3.
The simplest ratio is
1 : 4
Answer:
31 over 3
Step-by-step explanation:
The simplification of 3log(x + 4) – 2log(x – 7) + 5log(x - 2) - log(x^2) is ![\log \left(\frac{(x+4)^{3} \times(x-2)^{5}}{(x-7)^{2} \times x^{2}}\right)](https://tex.z-dn.net/?f=%5Clog%20%5Cleft%28%5Cfrac%7B%28x%2B4%29%5E%7B3%7D%20%5Ctimes%28x-2%29%5E%7B5%7D%7D%7B%28x-7%29%5E%7B2%7D%20%5Ctimes%20x%5E%7B2%7D%7D%5Cright%29)
<u>Solution:</u>
Given, expression is ![3 \log (x+4)-2 \log (x-7)+5 \log (x-2)-\log \left(x^{2}\right)](https://tex.z-dn.net/?f=3%20%5Clog%20%28x%2B4%29-2%20%5Clog%20%28x-7%29%2B5%20%5Clog%20%28x-2%29-%5Clog%20%5Cleft%28x%5E%7B2%7D%5Cright%29)
We have to write in as single logarithm by simplifying it.
Now, take the given expression.
![\rightarrow 3 \log (x+4)-2 \log (x-7)+5 \log (x-2)-\log \left(x^{2}\right)](https://tex.z-dn.net/?f=%5Crightarrow%203%20%5Clog%20%28x%2B4%29-2%20%5Clog%20%28x-7%29%2B5%20%5Clog%20%28x-2%29-%5Clog%20%5Cleft%28x%5E%7B2%7D%5Cright%29)
Rearranging the terms we get,
![\left.\rightarrow 3 \log (x+4)+5 \log (x-2)-2 \log (x-7)+\log \left(x^{2}\right)\right)](https://tex.z-dn.net/?f=%5Cleft.%5Crightarrow%203%20%5Clog%20%28x%2B4%29%2B5%20%5Clog%20%28x-2%29-2%20%5Clog%20%28x-7%29%2B%5Clog%20%5Cleft%28x%5E%7B2%7D%5Cright%29%5Cright%29)
![\text { since a } \times \log b=\log \left(b^{a}\right)](https://tex.z-dn.net/?f=%5Ctext%20%7B%20since%20a%20%7D%20%5Ctimes%20%5Clog%20b%3D%5Clog%20%5Cleft%28b%5E%7Ba%7D%5Cright%29)
![\rightarrow \log (x+4)^{3}+\log (x-2)^{5}-\left(\log (x-7)^{2}+\log \left(x^{2}\right)\right)](https://tex.z-dn.net/?f=%5Crightarrow%20%5Clog%20%28x%2B4%29%5E%7B3%7D%2B%5Clog%20%28x-2%29%5E%7B5%7D-%5Cleft%28%5Clog%20%28x-7%29%5E%7B2%7D%2B%5Clog%20%5Cleft%28x%5E%7B2%7D%5Cright%29%5Cright%29)
![\text { We know that } \log a \times \log b=\log a b](https://tex.z-dn.net/?f=%5Ctext%20%7B%20We%20know%20that%20%7D%20%5Clog%20a%20%5Ctimes%20%5Clog%20b%3D%5Clog%20a%20b)
![\rightarrow \log \left((x+4)^{3} \times(x-2)^{5}\right)-\left(\log \left((x-7)^{2} \times\left(x^{2}\right)\right)\right.](https://tex.z-dn.net/?f=%5Crightarrow%20%5Clog%20%5Cleft%28%28x%2B4%29%5E%7B3%7D%20%5Ctimes%28x-2%29%5E%7B5%7D%5Cright%29-%5Cleft%28%5Clog%20%5Cleft%28%28x-7%29%5E%7B2%7D%20%5Ctimes%5Cleft%28x%5E%7B2%7D%5Cright%29%5Cright%29%5Cright.)
![\text { We know that } \log a-\log b=\log \frac{a}{b}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20We%20know%20that%20%7D%20%5Clog%20a-%5Clog%20b%3D%5Clog%20%5Cfrac%7Ba%7D%7Bb%7D)
![\rightarrow \log \left(\frac{(x+4)^{3} \times(x-2)^{5}}{(x-7)^{2} \times x^{2}}\right)](https://tex.z-dn.net/?f=%5Crightarrow%20%5Clog%20%5Cleft%28%5Cfrac%7B%28x%2B4%29%5E%7B3%7D%20%5Ctimes%28x-2%29%5E%7B5%7D%7D%7B%28x-7%29%5E%7B2%7D%20%5Ctimes%20x%5E%7B2%7D%7D%5Cright%29)
Hence, the simplified form ![\rightarrow \log \left(\frac{(x+4)^{3} \times(x-2)^{5}}{(x-7)^{2} \times x^{2}}\right)](https://tex.z-dn.net/?f=%5Crightarrow%20%5Clog%20%5Cleft%28%5Cfrac%7B%28x%2B4%29%5E%7B3%7D%20%5Ctimes%28x-2%29%5E%7B5%7D%7D%7B%28x-7%29%5E%7B2%7D%20%5Ctimes%20x%5E%7B2%7D%7D%5Cright%29)