Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000
-40
-------
960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>
ANSWER
The set of all rational numbers and the set of all real numbers.
EXPLANATION
The set of rational numbers contains all numbers that can be written in the form,

where a and b are integers and b≠0.
The given number is

It belongs to the set of rational numbers.
The set of rational numbers is a subset of the set of real numbers.
Hence

also belongs to the set of real numbers.
The correct answer is A.
4x+16=-2
Subtract 16 from both sides
4x=-18
Divide both sides by 4
x=-18/4
x= -9/2
Final answer: x=-9/2
Answer:
Reflective symmetry over the line y = 4 is No
Reflective symmetry over the line y = 1/7x + 3 is Yes