1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
3 years ago
11

~HELP WITH MATH PLZ~

Mathematics
1 answer:
madreJ [45]3 years ago
5 0
1. Answer=B
-5.6°- -17.5°=-5.6°+17.5°=11.9°

2.Answer= $147
-$17- -$164=-$17+$164=$147

3.Answer=$10.35
$15.00-$3.25-$1.40=$
$15.00-$4.65=$10.35

4.Answer=A

5.Answer=C
You might be interested in
What is the answer to this question?
blondinia [14]
The area of the shape is 230 cm.

4 0
3 years ago
Please help me pick the tallest ones
natta225 [31]

Answer:

<h2>1ST: MIDDLE 2ND:RIGHT SIDE 3RD: GIRAFFE ON THE LEFT</h2><h2></h2>
4 0
3 years ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
3 years ago
What is 40% of 5?<br> i need help
natka813 [3]

Answer:

2

Step-by-step explanation:

8 0
3 years ago
Please help very urgent
pashok25 [27]

Answer:

y = 4x - 2

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Which two numbers add up to 27 and multiply to -160?
    8·1 answer
  • A DVD box set includes 3 thriller movies and 2 comedies. Use t to represent the cost of each thriller and c to represent the cos
    12·1 answer
  • It has 2 fewer sides than a heptagon
    10·2 answers
  • Tom determines the system of equations below has two solutions, one of which is located at the vertex of the parabola.
    12·1 answer
  • Need help with this math problem please!!
    10·2 answers
  • Subtract 0.6 - 0.23.
    5·1 answer
  • Albert's house, Billy's house and the candy store form a triangle as shown below. If Albert's house is 3 miles from the candy st
    10·1 answer
  • I can’t figure this out . I’m not good at math.
    14·2 answers
  • a drawing of a room has a scale of 1 inch = 4 feet. if the actual dimensions of the room are 14 feet by 16 feet. what are the di
    6·1 answer
  • How to solve x-3y=1 4x+5y=4 using elimination
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!