65 because if you put all the numbers in order and work out which one is in the middle you get the median. i enjoy using the rhyme. Hey diddle diddle, the medians the middle, you add then divide for the mean, the mode is the one that you see the most and the range is the difference between.
A.Fractions and decimals are not integers<span>. All whole </span>numbers<span> are</span>integers<span> (and all natural </span>numbers<span> are </span>integers<span>), but not all </span>integers<span>are whole </span>numbers<span> or natural </span>numbers<span>. For example, -5 is an </span>integer<span>but not a whole </span>number<span> or a natural </span>number<span>.
B.</span><span>A </span>number<span> is </span>rational<span> if it can be represented as p q with p , q ∈ Z and q ≠ </span>0<span> . Any </span>number<span> which doesn't fulfill the above conditions is irrational. It can be represented as a ratio of two integers as well as ratio of itself and an irrational </span>number<span> such that </span>zero<span> is not dividend in any case
</span>C.<span>In mathematics, an </span>irrational number<span> is any </span>real number<span> that cannot be expressed as a ratio of integers. </span>Irrational numbers<span> cannot be represented as terminating or repeating decimals.
</span>D.<span>The correct answer is </span>rational<span> and </span>real numbers<span>, because all </span>rational numbers<span> are also </span>real<span>. Correct. The </span>number<span> is between integers, so it can't be an integer or a whole </span>number<span>. It's written as a ratio of two integers, so it's a </span>rational number<span> and not irrational.
</span> Witch one do u think it is??
Answer:
43
Step-by-step explanation:
First, classify each line segments of triangle that are the same in both triangles.
RS = XU
RT = XW
ST = WU
Second, divide to find the scale ratio.
7.5/3 = 2.5
16/6.4 = 2.5
15/6 = 2.5
Since the scale ratios are identical, the triangles are similar.
Therefore, the answer is [ Yes, the sides are in the ratio 2:5 ]
Best of Luck!