First of all we need to find a representation of C, so this is shown in the figure below.
So the integral we need to compute is this:

So, as shown in the figure, C = C1 + C2, so:
Computing first integral:
Applying derivative:

Substituting this value into

Computing second integral:
Applying derivative:

Substituting this differential into


We need to know the limits of our integral, so given that the variable we are using in this integral is x, then the limits are the x coordinates of the extreme points of the straight line C2, so:
![I_{2}= -8\int_{4}^{8}}dx=-8[x]\right|_4 ^{8}=-8(8-4) \rightarrow \boxed{I_{2}=-32}](https://tex.z-dn.net/?f=I_%7B2%7D%3D%20-8%5Cint_%7B4%7D%5E%7B8%7D%7Ddx%3D-8%5Bx%5D%5Cright%7C_4%20%5E%7B8%7D%3D-8%288-4%29%20%5Crightarrow%20%5Cboxed%7BI_%7B2%7D%3D-32%7D)
Finally:
7 1/4 + 5 3/5 = 12 17/20 You can't reduce it no more.
Answer:
The two lines connect at (-4,-10)This means you would add 4 to x and then subtract 10 from the equation.
This means the answer is: B.g(x) = |x + 4| – 10.
104 divided by 13 equals 8, so that means there can be 2 rows on each page.