1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
6

Can someone please help me on this question

Mathematics
1 answer:
zalisa [80]3 years ago
8 0

Answer:

124 students

Step-by-step explanation:

let number of boys be 11x and girls be 9x.

A.T.Q 124 more boys than girls

equation=

11x = 9x + 124

11x- 9x = 124

2x = 124

x = 124/2 = 62

boys= 62 * 11 = 682

girls= 62 * 9 = 558

total = 558+682 = 1240 students

You might be interested in
A diamond ring increases in value at a rate of 5% per year. If the ring was purchased for $1200, which equation would calculate
Margarita [4]

Answer:

A - y = 1200(1+.05)^30

Step-by-step explanation:

In this case, you need to calculate the future value and the formula to calculate that is:

FV=PV*(1+r)^n

FV=future value

PV=present value

r=rate

n=number of periods of time

The present value would be the price of the ring which is $1200. The rate is 5% per year and the number of periods of time is 30 years since you need to find the ring's worth in 30 years. Now, you can replace the values on the formula:

FV=1200*(1+0.05)^30

According to this, the answer is that the equation to calculate how much will it be worth in 30 years is: y = 1200(1+.05)^30.

8 0
2 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
3 times the measure of an angle is 14 less than the measure of its complement. What is the measure of the angle?
Sedbober [7]
Let the measure of the angle be x and from that the measure of its complement is 90 - x. The equation that best represent the given condition above is,
                            3x = (90 - x) - 14
The value of x from the equation above is 19. Thus, the answer is letter A. 
7 0
3 years ago
What function is represented by a line with slope -2 that passes through the point (0,4)
Helga [31]

We can write the function in slope-intercept form (y + mx + b). Since we have the slope, we can solve for the y-intercept.

y = -2x + b

4 = -2(0) + b

4 = b

Input the data we have now.

y = -2x + 4

Since we are dealing with a function switch out the y for f(x)

f(x) = -2x + 4

Best of Luck!

7 0
2 years ago
Simplify radicals on the square root of 56
Tanzania [10]

Answer:

4\sqrt{14}

Step-by-step explanation:

Using the rule of radicals

\sqrt{a} × \sqrt{b} ⇔ \sqrt{ab}

Given

\sqrt{56}

= \sqrt{4(14)}

= \sqrt{4} × \sqrt{14}

= 2\sqrt{14}

4 0
3 years ago
Other questions:
  • Given 2x - y = 6, solve for y.
    14·1 answer
  • The area of a particular rectangle is 72. If the length of the rectangle is twice
    8·1 answer
  • Indicate in standard form the equation of the line passing through the given points.
    5·1 answer
  • How do you simplify the radical √144 ?
    15·2 answers
  • HELP
    14·2 answers
  • Which graph represents an exponential function?
    10·1 answer
  • How many groups of 3/4 are in 11/4
    5·2 answers
  • Write an equation for a line parallel to y=-3x-5 and passing through the point (4,-16)
    9·1 answer
  • Pedro wants to walk from the historic village to the science center. Then he will walk from the science center to the museum. If
    10·1 answer
  • The camp cook made 3 1/2 pints of baked beans. Each serving of beans is 1/2 of a pint. How many servings of beans did the cook m
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!