Answer:

Explanation:
As we know that the mass is revolving with constant angular speed in the circle of radius R
So we will have

now the position vector at a given time is

now the linear velocity is given as



Answer:
20 N exerts no torque about the pivot.
14 N exerts a counterclockwise torque of 14 * .3 = .42 N-m
6 exerts a clockwise torque of 6 * .7 = .42 N-m
The meter stick will not turn because there is no net torque on the meter stick.
Answer:
a) dh/dt = -44.56*10⁻⁴ cm/s
b) dr/dt = -17.82*10⁻⁴ cm/s
Explanation:
Given:
Q = dV/dt = -35 cm³/s
R = 1.00 m
H = 2.50 m
if h = 125 cm
a) dh/dt = ?
b) dr/dt = ?
We know that
V = π*r²*h/3
and
tan ∅ = H/R = 2.5m / 1m = 2.5 ⇒ h/r = 2.5
⇒ h = (5/2)*r
⇒ r = (2/5)*h
If we apply
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = 3*35/π = 105/π ⇒ d(r²*h)/dt = -105/π
a) if r = (2/5)*h
⇒ d(r²*h)/dt = d(((2/5)*h)²*h)/dt = (4/25)*d(h³)/dt = -105/π
⇒ (4/25)(3*h²)(dh/dt) = -105/π
⇒ dh/dt = -875/(4π*h²)
b) if h = (5/2)*r
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = d(r²*(5/2)*r)/dt = (5/2)*d(r³)/dt = -105/π
⇒ (5/2)*(3*r²)(dr/dt) = -105/π
⇒ dr/dt = -14/(π*r²)
Now, using h = 125 cm
dh/dt = -875/(4π*h²) = -875/(4π*(125)²)
⇒ dh/dt = -44.56*10⁻⁴ cm/s
then
h = 125 cm ⇒ r = (2/5)*h = (2/5)*(125 cm)
⇒ r = 50 cm
⇒ dr/dt = -14/(π*r²) = - 14/(π*(50)²)
⇒ dr/dt = -17.82*10⁻⁴ cm/s
Answer:
b. Conservation of charges
Explanation: