Answer:
a. one-half as great
Explanation:
The power developed by the first lifter is one-half as great as that of the second person.
Power is defined as the rate at which work is done;
Power =
Since the two lifters do the same work at different time, let us estimate their power;
P₁ =
P₂ =
We see that for P₁, power is half of the work done whereas in P₂ power is the same as the work done.
Therefore,
The power of the first weight lifter is one-half the second lifter.
Answer:
2 moles
Explanation:
2 moles becz
1 mole of oxygen = 16
.: 2 moles of oxygen = 36
:)
Answer:
0.80 m
Explanation:
elastic potential energy formula
elastic potential energy = 0.5 × spring constant × (extension) 2
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Answer:
speed = distance/time
just find the speed if it