67 ÷ 10 x 4 = 26.8 hours for her to eat 67 cookies
Answer:
-10
Step-by-step explanation:
You can use the measure of 112 on the similar shape to find b, as they are same side exterior angles. From there, you can find both a and c, because a/b and b/c are supplementary angles.
a = 68 degrees
c = 68 degrees
The true statement about the sequence of transformations is it includes exactly two rigid transformations.
<h3>How to determine the true statement?</h3>
The transformation statement is given as:
a sequence of transformations that rotates an image and then translates it in order to map it onto another image
This can be split as follows:
- A sequence of transformations that rotates an image
- Then translates it in order to map it onto another image
Translation and rotation are rigid transformations
This means that the size and the angle of the shape that is transformed will remain the same
Hence, the true statement about the sequence of transformations is it includes exactly two rigid transformations.
Read more about transformation at
brainly.com/question/4289712
#SPJ1
Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![m^2e^{mt}+10me^{mt}+25e^{mt}=0\\\\\Rightarrow (m^2+10y+25)e^{mt}=0\\\\\Rightarrow m^2+10m+25=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow m^2+2\times m\times5+5^2=0\\\\\Rightarrow (m+5)^2=0\\\\\Rightarrow m=-5,-5.](https://tex.z-dn.net/?f=m%5E2e%5E%7Bmt%7D%2B10me%5E%7Bmt%7D%2B25e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%5E2%2B10y%2B25%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B10m%2B25%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B2%5Ctimes%20m%5Ctimes5%2B5%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B5%29%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-5%2C-5.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and

Thus, the required solution is
