1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Basile [38]
3 years ago
15

All points of the step function f(x) are graphed.

Mathematics
2 answers:
Bond [772]3 years ago
4 0

Number 4 or {x| 2 < x ≤ 4}

Step-by-step explanation:

{x| 2 < x ≤ 4} is the only one that fits the peramiters on the graph no other one starts at any point stated

tino4ka555 [31]3 years ago
4 0

Answer:

A or {x| –4 < x ≤ 4}

Step-by-step explanation:

it goes from -4 to 4 on the x axis

You might be interested in
An encyclopedia has eight volumes. In how many ways can the eight volumes be replaced on the shelf? Explain.
aev [14]
Imagine there are 8 spots on the shelf. Replace the volumes one by one. The first volume to be replaced could go in any one of the eight spots. The second volume to be replaced could then go in any one of the seven remaining spots. The third volume to be replaced could then go in any one of the six remaining spots. etc So the total number of ways the eight volumes could be replaced = 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320
7 0
3 years ago
The table shows the syrup production of four states:
Olin [163]

Answer:

Step-by-step explanation:

The table shows the syrup production of four states :

State                             Syrup   Production (liters)            Total

Maine                               1.10 × 106                                    116.60

New Hampshire             3.14 × 105                                    329.70

New York                        9.65 × 105                                  1,013.25

Vermont                          1.89 × 106                                   200.34

Now order the states from least to greatest.

1. Maine

2. Vermont

3. New Hampshire

4. New York

4 0
3 years ago
Read 2 more answers
(a) the number 561 factors as 3 · 11 · 17. first use fermat's little theorem to prove that a561 ≡ a (mod 3), a561 ≡ a (mod 11),
Vitek1552 [10]
LFT says that for any prime modulus p and any integer n, we have

n^p\equiv n\pmod p

From this we immediately know that

a^{561}\equiv a^{3\times11\times17}\equiv\begin{cases}(a^{11\times17})^3\pmod3\\(a^{3\times17})^{11}\pmod{11}\\(a^{3\times11})^{17}\pmod{17}\end{cases}\equiv\begin{cases}a^{11\times17}\pmod3\\a^{3\times17}\pmod{11}\\a^{3\times11}\pmod{17}\end{cases}

Now we apply the Euclidean algorithm. Outlining one step at a time, we have in the first case 11\times17=187=62\times3+1, so

a^{11\times17}\equiv a^{62\times3+1}\equiv (a^{62})^3\times a\stackrel{\mathrm{LFT}}\equiv a^{62}\times a\equiv a^{63}\pmod3

Next, 63=21\times3, so

a^{63}\equiv a^{21\times3}=(a^{21})^3\stackrel{\mathrm{LFT}}\equiv a^{21}\pmod3

Next, 21=7\times3, so

a^{21}\equiv a^{7\times3}\equiv(a^7)^3\stackrel{\mathrm{LFT}}\equiv a^7\pmod3

Finally, 7=2\times3+1, so

a^7\equiv a^{2\times3+1}\equiv (a^2)^3\times a\stackrel{\mathrm{LFT}}\equiv a^2\times a\equiv a^3\stackrel{\mathrm{LFT}}\equiv a\pmod3

We do the same thing for the remaining two cases:

3\times17=51=4\times11+7\implies a^{51}\equiv a^{4+7}\equiv a\pmod{11}

3\times11=33=1\times17+16\implies a^{33}\equiv a^{1+16}\equiv a\pmod{17}

Now recall the Chinese remainder theorem, which says if x\equiv a\pmod n and x\equiv b\pmod m, with m,n relatively prime, then x\equiv b{m_n}^{-1}m+a{n_m}^{-1}n\pmod{mn}, where {m_n}^{-1} denotes m^{-1}\pmod n.

For this problem, the CRT is saying that, since a^{561}\equiv a\pmod3 and a^{561}\equiv a\pmod{11}, it follows that

a^{561}\equiv a\times{11_3}^{-1}\times11+a\times{3_{11}}^{-1}\times3\pmod{3\times11}
\implies a^{561}\equiv a\times2\times11+a\times4\times3\pmod{33}
\implies a^{561}\equiv 34a\equiv a\pmod{33}

And since a^{561}\equiv a\pmod{17}, we also have

a^{561}\equiv a\times{17_{33}}^{-1}\times17+a\times{33_{17}}^{-1}\times33\pmod{17\times33}
\implies a^{561}\equiv a\times2\times17+a\times16\times33\pmod{561}
\implies a^{561}\equiv562a\equiv a\pmod{561}
6 0
4 years ago
I really need help solving this problem from my trigonometry prepbook
padilas [110]

The terminal ray of 145° lies in II Quadrant.

The terminal ray of -83° lies in IV Quadrant.

The terminal ray of -636 lies in I Quadrant.

The terminal ray of 442 lies in I Quadrant.

5 0
1 year ago
Help me please , ps have a good day :))
serg [7]

Answer:

the second one (Diego)

Step-by-step explanation:

7a-3a

5b+4b

8 0
3 years ago
Read 2 more answers
Other questions:
  • Please help with this Algebra 1 math problem:
    14·2 answers
  • A. f(-2)= <br> b. f(x)=2,x=
    9·1 answer
  • Simply 3 small 2+8x4 need answer
    6·2 answers
  • What is the area of a rectangle with length 1/2 and width 1/2
    11·2 answers
  • Which point represents the x-intercept of this exponential function?
    9·1 answer
  • A boy walks 40m from a city X on a bearing of 040° to a city Y. She then walks 40m on a bearing of 140° to a city Z. Find the be
    10·1 answer
  • 4. (i) Solve the equation 2x2 – 7x + 4 = 0, giving
    8·1 answer
  • What value of w makes this multiplication sentence true? 28 · (824 + 514) = 28 · 824 + 28 · w w =
    8·1 answer
  • [6x(10-7)-4]•7 please show work :/
    11·2 answers
  • An 8-foot roll of wrapping paper costs $12.48. What is the price per inch?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!