Answer:
D. The moon is closer to Earth than the sun.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the moon across to the Earth sphere.
Since gravity variate with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance
For example, see the image below, point A is closer to the moon than point b and at the same time the center of mass of the Earth will feel more attracted to the moon than point B. Therefore, that creates a tidal bulge in point A and point B.
The Sun tidal force contributes to the tidal force of the moon over the earth making high tides higher and low tides lower.
However, even when the sun is more massive than the moon, it is farther away from the Earth than the moon. So, it is clear by equation 1 that the moon's gravity has a greater effect on Earth's oceans than the sun's gravity.
Explanation:
To convert from scientific notation to decimal, move the decimal point 5 places to the left.
5.93×10⁻⁵ = 0.0000593
Answer:
Magnitude of Thickness has order of 2.919 ×
m
Explanation:
Thickness of book is 3.2 cm.
Number of pages in the book is 1096.
Thickness of 1096 pages is 3.2 cm.
Thus, thickness of 1 page is
cm
Thickness of 1 page of book is 0.002919 cm
Magnitude of Thickness has order of 2.919 ×
m
Answer:
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
Explanation:
hope this helps!
Answer:
d. 2m to the right of the pivot
Explanation:
m1 = m
m2 = 0.5m
d1 = 1m
d2 = ?
from principle of moment,
CWM = ACWM
m × 1 = 0.5m × d2
d2 = m/0.5m
= 1/0.5
= 2m
The 2nd child will have to sit 2m to the right
The turning effect of a force is known as the moment. It is the product of the force multiplied by the perpendicular distance from the line of action of the force to the pivot or point where the object will turn.
The principle of moments states that when in
equilibrium the total sum of the anti clockwise
moment is equal to the total sum of the
clockwise moment.
When a system is stable or balance it is said to be in equilibrium as all the forces acting on the system cancel each other out.
In equilibrium
Total Anticlockwise Moment = Total
Total Anticlockwise Moment = TotalClockwise Moment