Answer:
the person on the boat is moving 15mph on the boat and throws the ball 10mph. you add that together its 25mph. the other person is standing on land so their is no extra speed.
Explanation:
its common
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
<h2>Answer: Resonance
</h2>
Resonance is a phenomenon that occurs when a body capable of vibrating is subjected to the action of a periodic force, whose frequency of vibration approaches the characteristic frequency of vibration (called resonance frequence) of said body. This is due a relatively small force applied in a repeated form, causing the amplitude of the oscillating system to become very large.
In other words, for the specific case of sound waves, this phenomenon occurs when the frequency of the wave that is external to the system or body coincides with the resonance frequency (characteristic frequency that reaches the maximum degree of oscillation) of this system or body.
In these circumstances the body vibrates, progressively increasing the amplitude of movement after each successive actions of the force. However, this effect can be destructive in some rigid materials.
Answer: see the graph attached (straight line, passing through the origin and positive slope).
Justification:1)
Kinetic energy and temperature are in direct proportion. That means:
i) Being kinetic energy y and temperature x:
y α xii) That implies:
y = kx,where k is the constant of proportionality.
iii) The graph is a
line that passes through the origin and has positive slope k (k = y / x).2) The proportional relationship between kinetic energy (KE) and temperature (T) is shown by the
Boltzman law, which states:
Average KE = [3 / 2] KT, where K is Boltzman's constant, whose graph is of the form shown in the figure attached.