Answer:
a = 0.009 J
b = 0.19 m/s
c = 0.005 J and 0.004 J
Explanation:
Given that
Mass of the object, m = 0.5 kg
Spring constant of the spring, k = 20 N/m
Amplitude of the motion, A = 3 cm = 0.03 m
Displacement of the system, x = 2 cm = 0.02 m
a
Total energy of the system, E =
E = 1/2 * k * A²
E = 1/2 * 20 * 0.03²
E = 10 * 0.0009
E = 0.009 J
b
E = 1/2 * k * A² = 1/2 * m * v(max)²
1/2 * m * v(max)² = 0.009
1/2 * 0.5 * v(max)² = 0.009
v(max)² = 0.009 * 2/0.5
v(max)² = 0.018 / 0.5
v(max)² = 0.036
v(max) = √0.036
v(max) = 0.19 m/s
c
V = ±√[(k/m) * (A² - x²)]
V = ±√[(20/0.5) * (0.03² - 0.02²)]
V = ±√(40 * 0.0005)
V = ±√0.02
V = ±0.141 m/s
Kinetic Energy, K = 1/2 * m * v²
K = 1/2 * 0.5 * 0.141²
K = 1/4 * 0.02
K = 0.005 J
Potential Energy, P = 1/2 * k * x²
P = 1/2 * 20 * 0.02²
P = 10 * 0.0004
P = 0.004 J
Answer:
define 1 second time
One second is the time that elapses during 9,192,631,770 (9.192631770 x 10 9 ) cycles of the radiation produced by the transition between two levels of the cesium 133 atom. ... One second is equal to 1/86,400 of a mean solar day.
B is the answer...
mark brainliest
A: is potential
C: is losing kinetic energy and gaining potential energy
B: kinetic energy is at its highest
D: is loosing potential energy and gaining kinetic energy
Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev