If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?
If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?
Object 3 should be placed closer to object 1.
Object 3 should be placed on a halfway between object 2 and object 1.
Object 3 should be placed closer to object 2.
Solution
I think that Object 3 should be placed closer to object 2.
Answer:
16kg*m/s west
Explanation:
P=M*V
Momentum= Mass time velocity, plug it into the formula,
M is 4 and V is 4, 4*4=16, and since the object is moving west its going to be west.
basically saying in simpler terms,
16=4*4
Answer:
Chain reaction is possible by neutron
Explanation:
Nuclear reaction is mainly two types,
⇒ Nuclear Fission : heavy atom split into two light atom.
Ex. Uranium, thorium
⇒ Nuclear fusion : lighter atom combine together
Ex. Hydrogen to helium
In fusion reaction the large amount of energy is produced as compare to fission reaction.
Sun gets brighter by fusion reaction.
In case of uranium fission reaction is possible by colliding neutron.
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer: 80 N downward
Explanation:
705 - 625 = 80 N downward