Answer:
Nx = λx
Nx = 0, with x≠0
if N is nilpotent matrix, then the system Nx = 0 has non-trivial solutions
Step-by-step explanation:
given that
let N be a square matrix in order of n
note: N is nilpotent matrix with
, k ∈ N
let λ be eigenvalue of N and let x be eigenvector corresponding to eigenvalue λ
Nx = λx (x≠0)
N²x = λNx = λ²x
∴
= (λ^k)x
= 0, (λ^k)x =
, where n is dimensional vector
where x = 0, (λ^k) = 0
λ = 0
therefore, Nx = λx
Nx = 0, with x≠0
note: if N is nilpotent matrix, then the system Nx = 0 has non-trivial solution