Answer:
i rather just sit on a guys lap and watch him play than me playing cause those games mad frustrating
Explanation:
Answer: The first isotope has a relative abundance of 79% and last isotope has a relative abundance of 11%
Explanation: Given that the average atomic mass(M) of magnesium
= 24.3050amu
Mass of first isotope (M1) = 23.9850amu
Mass of middle isotope (M2)=24.9858amu
Mass of last isotope(M3)= 25.9826amu
Total abundance = 1
Abundance of middle isotope = 0.10
Let abundance of first and last isotope be x and y respectively.
x+0.10+y =1
x = 0.90-y
M = M1 × % abundance of first isotope + M2 × % of middle isotope +M3 ×% of last isotope
24.03050= 23.985× x + 24.9858 ×0.10 + 25.9826×y
Substitute x= 0.90-y
Then
y = 0.11
Since y=0.11, then
x= 0.90-0.11
x=0.79
Therefore the relative abundance of the first isotope = 11% and the relative abundance of the last isotope = 79%
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium<span> is reached, i.e. until their temperatures are equal. We say that </span>heat<span>flows from the hotter to the cooler object. </span><span>Heat is energy on the move.</span> <span>
</span>Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
Answer:
(2R,3S)-2-chloro-3,5-dimethylhexane
Explanation:
As first step we have the <u>attack of the OH group</u> to the P atom in the PCl3 and one of the Cl atoms would leave. Then we will have a <u>rearrangement</u> to produce a <u>double bond </u>with the oyxgen on the OH. Finally the Cl produced will a<u>ttack the carbon</u> in a <u>Sn2 substitution reaction</u> to produce the halide with an <u>opposite configuration</u>.