The coefficients should be 1; 6; 4; 4 and the coefficient of CO2 is 4
- The water in the pot becomes hotter as a result of heat transfer.
- <em>Energy can be transferred from a region to another , but there will still the same overall amount of energy</em> ( energy conservation)
- When a pot containing water is placed on the stove and heat is applied with the burner, there is a flow of heat from the burner to the water.
- Heat will be transferred from the burner to the pot, then there will be transferred of heat from the pot to the water, the molecules there in the water will be energized as a result of the heat transfer until the boiling point is reached.
- Energy transfer can take place in three form, this could be conduction, radiation or convention.
- Convention which is a cyclical process is the one that occurs in fluids only so as a result of convection , the water at the bottom will be heated and the molecules start moving and it will rise till it get to the water at the top of the pot.
<em>Therefore, the water is heated as a result of heat transfer.</em>
<em />
Learn more at : brainly.com/question/17858145?referrer=searchResults
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
The answer is True because they are formed of deposition.
Answer:
Student 4, because a Brønsted-Lowry base always accepts a proton from an acid to form a conjugate acid.
Explanation:
That's the definition of a Brønsted-Lowry base.
Student 2 is wrong. All bases will neutralize acids. That doesn't tell you the type of base.
Student 3 is wrong. The pH of a solution doesn't tell you the type of base.
Student 1 is wrong. Both Arrhenius and Brønsted-Lowry bases react with acids to produce water and a salt.