Answer:
V₂ = 111.3 mL
Explanation:
Given data:
Initial volume of gas = 50.0 mL
Initial temperature = standard = 273.15 K
Final volume = ?
Final temperature = 335 °C (335+273.15 = 608.15 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 50.0 mL ×608.15 K / 273.15 k
V₂ = 30407.5 mL.K / 273.15 K
V₂ = 111.3 mL
Add barium chloride. Reaction equation as shown:
Li2SO4(aq) + BaCl2(aq) → BaSO4(s) + 2LiCl(aq)
Reaction will result in a white precipitate, making the solution look milky.
Answer:
8.32 s⁻¹
Explanation:
Given that:
The concentration of myosin = 25 pmol/L
R_max = 208 pmol/L/s
The objective is to determine the turnover number of the enzyme molecule myosin, which has a single active site.
In a single active site of enzyme is known to be a region where there is binding of between substrate molecules, thereafter undergoing chemical reaction.
The turnover number of the enzyme is said to be the number of these substrate molecule which binds together are being converted into products.
The turnover number of the enzyme molecule of myosin can be calculated by the expression: 
⇒ 
= 8.32 s⁻¹
Answer:
ddddddddddddddddddddddddddddddddddddddddddddddddd
Explanation:
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g