1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
8

the hypotenuse of a right triangle is 3 cm and one of the legs is 1 cm what is the length of the other leg ?

Mathematics
1 answer:
Afina-wow [57]3 years ago
4 0

Answer:

2\sqrt{2}

Step-by-step explanation:

let the other leg be x

Using Pythagoras' identity

The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is

x² + 1² = 3²

x² + 1 = 9 ( subtract 1 from both sides )

x² = 8 ( take the square root of both sides )

x = \sqrt{8}

  = \sqrt{4(2)}

  = \sqrt{4} × \sqrt{2} = 2\sqrt{2} ← exact value

You might be interested in
PLEASE HELP I AM ON A TIME LIMIT
Alinara [238K]

Answer:

  (a) even: J, K, M, O; odd: L, N

  (b) L and O are connected to J

  (c) N is of degree 3

Step-by-step explanation:

Count the edge ends that intersect each vertex. You get ...

  J-2, K-2, L-3, M-2, N-3, O-4

These numbers are the <em>degree</em> of the vertex.

a) Vertices with even degree are J, K, M, O, since these have degrees of 2, 2, 2, and 4, respectively--all even numbers.

Vertices with odd degree are L and N, since these both have degree 3, an odd number.

__

b) The vertices that are adjacent to J are the ones at the other ends of the edges that intersect vertex J. One of those two edges connects to vertex L; the other to vertex O. J is adjacent to L and O.

__

c) When we counted edges in part (a), we found vertex N to be of degree 3.

5 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
A spinner is divided into 8 equal sections. Two of the sections are red, 3 are green, and 3
Marina86 [1]

Answer:

part a: 1/2, two red, probability is 1/2

part b: 450, 150 times 3 =450, hope it helps

please make me brainliest

3 0
3 years ago
What is the log 5x=log (2x+9)
Ray Of Light [21]
5x = 2x + 9, where 5x > 0 and 2x + 9 > 0 ;
Then, 3x = 9 ;
Then, x = 3 ;
Verify : 5 × 3 = 2 × 3 + 9 ;correct !
            5 × 3 > 0 ; correct !
            2 × 3 + 9 > 0; correct !
8 0
3 years ago
How to find the perimeter of shapes
Morgarella [4.7K]
You add the legnths of the sides together exg
if you have rectangle with width=2 legnth=3
permiter=w+w+l+l=2+2+3+3=10
5 0
3 years ago
Other questions:
  • Shannon and Kristoph are dividing numbers written in scientific notation.
    5·1 answer
  • Beth sold half of her comic books and then bought nine more she now has 28 how many did she have to start with
    6·1 answer
  • 7-4x+2(5x+8). If x=-2
    14·2 answers
  • Witch is NOT a method for solving systems of a linear equations
    14·1 answer
  • Please help with 7!!!!!!
    15·1 answer
  • Seven more than two times a certain number is 181. Find the number
    10·1 answer
  • PLEASE HELP !! ILL GIVE BRAINLIEST *EXTRA POINTS*.. <br> IM GIVING 40 POINTS !! DONT SKIP :((.
    15·1 answer
  • U will get 80 points if u answer correctly
    5·2 answers
  • Solve for Y<br> 4x – 5y = -20
    5·2 answers
  • For a charity initiative, 420 t-shirts were made; in the morning 1/3 of the t-shirts is sold and in the afternoon 4/7 of the rem
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!