Answer:
I was unsure about the way your question was written so I solved for two equations: f(x)=14(5-x)*2 and f(x)=14(5-x)+2
Step-by-step explanation:
If you would like to solve 2x + 5y = - 13 and 3x - 4y = -8, you can do this using the following steps:
<span>2x + 5y = -13 /*4
3x - 4y = -8 /*5
</span>_________________
8x + 20y = -52
15x - 20y = -40
_________________
8x + 15x + 20y - 20y = -52 - 40
23x = -92 /23
x = -92 / 23
x = -4
<span>2x + 5y = -13
</span>2 * (-4) + 5y = -13
-8 + 5y = -13
5y = -13 + 8
5y = -5
y = -1
(x, y) = (-4, -1)
The correct result would be D.) <span>(-4, -1).</span>
The number 12 is missing in the data set.
<u>Step-by-step explanation</u>:
- The numbers are 9,12,16,18,23.
- The missing number is assumed to be 'x'
Mean = Sum of the integers / Total number of integers.
15 = (9+12+16+18+23+x) / 6
15 = (78+x) / 6
90 = 78+x
x = 90-78
x = 12
Answer:
(2, -3) and r = 3.
Step-by-step explanation:
you can also plug this equation in desmos but I guess it's good to know how to do it also:
The equation of a circle is (x-h)^2 + (y-k)^2 = r^2
Now in order to make a perfect square on both sides, we need to do this:
First add 9 to both sides:
x^2 + 6x + 9 + y^2 -4y +4 = 9.
I purposely shifted it to show the perfect square created when you add 9 to both sides. Factor:
(x+3)^2 + y^2 - 4y + 4 = 9.
now the second bolded part is allso a perfect square. Factor:
(x+3)^2 + (y-2)^2 = 9
Based on the equation of a circle, the center must be at (2, -3) and the radius is the square root of 9 which is 3.
:)
Answer:
x = ±5
Step-by-step explanation:
4x^2 = 100
Divide each side by 4
4/4x^2 = 100/4
x^2 = 25
Take the square root of each side
sqrt(x^2) = ±sqrt(25)
x = ±5