Answer:
m∠MON = 15°
Step-by-step explanation:
The given parameters are;
m∠LON = 77°
m∠LOM = 9·x + 44°
m∠MON = 6·x + 3°
By angle addition postulate, we have;
m∠LON = m∠LOM + m∠MON
Therefore, by substituting the known values, we have;
∴ 77° = 9·x + 44° + 6·x + 3°
77° = 9·x + 44° + 6·x + 3° = 15·x + 47°
77° = 15·x + 47°
77° - 47° = 15·x
15·x = 77° - 47° = 30°
15·x = 30°
x = 30°/15 = 2°
x = 2°
Given that m∠MON = 6·x + 3° and x = 2°, we have;
m∠MON = 6 × 2° + 3° = 12° + 3° = 15°
m∠MON = 15°.
Answer:
T=98W-115W+1840
Step-by-step explanation:
$98 per credit at Westside (W)
$115 per credit at Pinewood (P)
Expression 1 : 98W+115P=T
Expression 2 : W+P=16
Combined: if W=16-P
Total=98W+115(16-W)
T=98W-115W+1840
Answer:
Option (2)
Step-by-step explanation:
Option (1).


Therefore, both the sides of the expression are not equal.
False.
Option (2).


True.
Option (3).


False.
Option (4).

Both the sides are not equal.
False.
The situation forms the right triangle above:
Where x is the length of the ladder.
Apply the Pythagorean theorem:
c^2 = a^2 +b^1
where:
c = hypotenuse = longest side = x
A &b = the other 2 legs of the triangle
Replacing:
x^2 = 60^2 + 15^2
Solve for x
x^2 = 3,600 + 225
x^2 = 3,825
x =√3,825
x = 61.85 ft