<h3>
Answer: A. 18*sqrt(3)</h3>
=============================================
Explanation:
We'll need the tangent rule
tan(angle) = opposite/adjacent
tan(R) = TH/HR
tan(30) = TH/54
sqrt(3)/3 = TH/54 ... use the unit circle
54*sqrt(3)/3 = TH .... multiply both sides by 54
(54/3)*sqrt(3) = TH
18*sqrt(3) = TH
TH = 18*sqrt(3) which points to <u>choice A</u> as the final answer
----------------------
An alternative method:
Triangle THR is a 30-60-90 triangle.
Let x be the measure of side TH. This side is opposite the smallest angle R = 30, so we consider this the short leg.
The hypotenuse is twice as long as x, so TR = 2x. This only applies to 30-60-90 triangles.
Now use the pythagorean theorem
a^2 + b^2 = c^2
(TH)^2 + (HR)^2 = (TR)^2
(x)^2 + (54)^2 = (2x)^2
x^2 + 2916 = 4x^2
2916 = 4x^2 - x^2
3x^2 = 2916
x^2 = 2916/3
x^2 = 972
x = sqrt(972)
x = sqrt(324*3)
x = sqrt(324)*sqrt(3)
x = 18*sqrt(3) which is the length of TH.
A slightly similar idea is to use the fact that if y is the long leg and x is the short leg, then y = x*sqrt(3). Plug in y = 54 and isolate x and you should get x = 18*sqrt(3). Again, this trick only works for 30-60-90 triangles.
Answer:
wait really ? lol
Step-by-step explanation:
The surface area of a cylinder is the sum of the area of the two ends and the lateral area.
.. surface area = 2*(end area) +(lateral area)
.. = 2*(π*r^2) +(2π*r*h)
.. = 2π*r*(r +h)
.. = 2*3.14*(8 in)*(8 in +8 in)
.. = 3.14*256 in^2
.. ≈ 803.8 in^2
The 3rd selection is appropriate.
Answer: The open interval would be (31.4,42.5).
Step-by-step explanation:
Since we have given that
mean = 36.9
Standard deviation = 16.5
n = 48
At 98% confidence interval, z = 2.33
So, Interval would be

Hence, the open interval would be (31.4,42.5).
Answer:
OPTION A: 2x + 3y = 5
Step-by-step explanation:
The product of slopes of two perpendicular lines is -1.
We rewrite the given equation as follows:
2y = 3x + 2
⇒ y = 
The general equation of the line is: y = mx + c, where 'm' is the slope of the line.
Here, m =
.
Therefore, the slope of the line perpendicular to the line given =
because
.
To determine the equation of the line passing through the given point and a slope we use the Slope - One - point formula which is:
y - y₁ = m(x - x₁)
The point is: (x₁, y₁) = (-2, 3)
Therefore, the equation is:
y - 3 =
(x + 2) $
⇒ 3y - 9 = -2(x + 2)
⇒ 3y - 9 = -2x - 4
⇒ 2x + 3y = 5 is the required equation.