Answer:
<h2><u><em>100 kcal of bond energy</em></u></h2>
<u><em></em></u>
Answer:
pH = 1.33
Explanation:
Because HCl is a strong acid, each mole of HCl will completely dissociate into H⁺ and Cl⁻ species.
Now we calculate the molar concentration (molarity) of H⁺:
- Molarity = moles / volume
(750 mL ⇒ 750 / 1000 = 0.750 L)
- Molarity = 0.035 moles / 0.750 L
Then we calculate the pH of the solution:
132 grams x (1 mol / 44 grams) = 3 moles
<span>3 moles X (22.4 L/ 1 mol) = 67.2 </span><span>L</span>
Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L
Answer:
25.2 kJ
Explanation:
The complete question is presented in the attached image to this answer.
Note that, the heat gained by the 2.00 L of water to raise its temperature from the initial value to its final value comes entirely from the combustion of the benzoic acid since there are no heat losses to the containing vessel or to the environment.
So, to obtained the heat released from the combustion of benzoic acid, we just calculate the heat required to raise the temperature of the water.
Q = mCΔT
To calculate the mass of water,
Density = (mass)/(volume)
Mass = Density × volume
Density = 1 g/mL
Volume = 2.00 L = 2000 mL
Mass = 1 × 2000 = 2000 g
C = specific heat capacity of water = 4.2 J/g.°C
ΔT = (final temperature) - (Initial temperature)
From the graph,
Final temperature of water = 25°C
Initial temperature of water = 22°C
ΔT = 25 - 22 = 3°C
Q = (2000×4.2×3) = 25,200 J = 25.2 kJ
Hope this Helps!!!