Answer:
i√19
Step-by-step explanation:
Because √(-19) = √(-1)√19, and because √(-1) = i, we get i√19
Answer:
The diagram for the question is missing, but I found an appropriate diagram fo the question:
Proof:
since OC = CD = 297mm Therefore, Δ OCD is an isoscless triangle
∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
∠DOP = 22.5°
∠PDO = 67.5°
∠ADO = 22.5°
∠AOD = 67.5°
Step-by-step explanation:
Given:
AB = CD = 297 mm
AD = BC = 210 mm
BCPO is a square
∴ BC = OP = CP = OB = 210mm
Solving for OC
OCB is a right anlgled triangle
using Pythagoras theorem
(Hypotenuse)² = Sum of square of the other two sides
(OC)² = (OB)² + (BC)²
(OC)² = 210² + 210²
(OC)² = 44100 + 44100
OC = √(88200
OC = 296.98 = 297
OC = 297mm
An isosceless tringle is a triangle that has two equal sides
Therefore for △OCD
CD = OC = 297mm; Hence, △OCD is an isosceless triangle.
The marked angles are not given in the diagram, but I am assuming it is all the angles other than the 90° angles
Since BC = OB = 210mm
∠BCO = ∠BOC
since sum of angles in a triangle = 180°
∠BCO + ∠BOC + 90 = 180
(∠BCO + ∠BOC) = 180 - 90
(∠BCO + ∠BOC) = 90°
since ∠BCO = ∠BOC
∴ ∠BCO = ∠BOC = 90/2 = 45
∴ ∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
For ΔOPD

Note that DP = 297 - 210 = 87mm
∠PDO + ∠DOP + 90 = 180
∠PDO + 22.5 + 90 = 180
∠PDO = 180 - 90 - 22.5
∠PDO = 67.5°
∠ADO = 22.5° (alternate to ∠DOP)
∠AOD = 67.5° (Alternate to ∠PDO)
Answer:
The coordinates are (22, 18)
Step-by-step explanation: hope this helps its a bit easy if ur in middle school
Answer:3 minute
Step-by-step explanation:
Sakura speaks hungarian =150 words per minute
Sakura speaks polish =190 words per minute
and it is given she speaks 270 more words in polish than in hungarian
She speaks for a total of 5 minutes
let she speaks hungarian for t mins
therefore 
t=2 mins
therefore sakura speaks hungarian for 2 mins and polish for 3 mins
Answer:
Step-by-step explanation:
Use SOH CAH TOA to recall how the trig functions fit on a triangle
SOH: Sin(Ф)= Opp / Hyp
CAH: Cos(Ф)= Adj / Hyp
TOA: Tan(Ф) = Opp / Adj
5)
Adj = 14
Hyp = 26
∠X
so use
CAH
Cos(X) = 14/26
X = arcCos(14/26)
X = 57.421°
X = 57.4 ° ( rounded to nearest 10th )
6)
∠X
Hyp = 46
Opp = 12
use SOH
Sin(x) = 12/46
X = arcSin(12/46)
X = 15.121°
X = 15.1 ° ( rounded to nearest 10th )
7)
∠X
Adj = 29
Opp = 24
use TOA
Tan(x) = 29 / 24
X = arcTan( 29 /24)
X = 50.389
X = 50.4 ° ( rounded to nearest 10th )
8)
∠X
Adj = 22
Opp = 6
use TOA agian
Tan(x) = 6 / 22
X = arcTan(6/22)
X = 5.194
X = 5.2 ° ( rounded to the nearest 10th )
:)