1. To solve this exercise, you must apply the formula for calculate the area of a trapezoid, which is shown below:
<span>
A=(b1+b2/2)h
</span><span>
A is the area of the trapezoid.
</span><span> b1 is the larger base of the trapezoid (b1=16-4=12 ft).
</span><span> b2 is the smaller base of the trapezoid (b2=10-4=6 ft).
</span><span> h is the height of the trapezoid (h=12-4=8 ft)
</span><span>
2. When you substitute these values into the formula A=(b1+b2/2)h, you obtain:
</span><span>
A=(b1+b2/2)h
</span><span> A=(12 ft+6 ft/2)(8 ft)
</span><span> A=9 ftx8ft
</span><span> A=72 ft²
</span><span>
3. </span><span>The length of fencing is:</span> a²=b²+c² a=√b²+c² a=√(8 ft)²+(6 ft)² a=10 ft Perimeter (Length of fencing)=12 ft+8 ft+6 ft+10 ft=36 ft
Answer:
Habían inicialmente 84 vacas. Murieron 36 vacas. 24 vacas fueron vendidas.
Step-by-step explanation:
Sea
la cantidad inicial de vacas. De acuerdo con el enunciado, murieron tres séptimos de la cantidad inicial y la mitad de ese remanente fue vendida, quedando 24 vacas. Matemáticamente, tenemos las siguientes operaciones:
Cantidad inicial de vacas

Habían inicialmente 84 vacas.
Cantidad de vacas muertas


Murieron 36 vacas.
Cantidad de vacas vendidas


24 vacas fueron vendidas.
Answer:
136 general admission tickets were purchased, and 300 upper reserved tickets were purchased.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the number of general admission tickets purchased.
y is the number of reserved tickets purchased.
There were 436 tickets purchased for a major league baseball game.
This means that
, or also, 
The general admission tickets cost $6.50 and the upper reserved tickets cost $8.00. The total amount of money spent was $3284.00.
This means that
. Since 




And:

136 general admission tickets were purchased, and 300 upper reserved tickets were purchased.
Answer:
Step-by-step explanation:
a) a^3-64b^3
=(a)^3-(4b)^3
=(a-4b)(a^2+4ab+16b^2)
b) 3x^3-81y^3z^6
=3(x^3-27y^3z^6)
=3{(x)^3-(3yz^2)^3}
=3(x-3yz^2)(x^2+3xyz^2+9y^2z^4)
c)16a^3b^3-54c^3d^3
=2(8a^3b^3-27c^3d^3)
=2{(2ab)^3-(3cd)^3
=2(2ab-3cd)(4a^2b^2+6abcd+9c^2d^2)
hope u got!!
Answer:
The answer is: 1 43/48
~hope this answered your question correctly, have a gr8 day my friend!~
Step-by-step explanation: