Look at the number in the thousands place. This number is 6. Now look at the number after it. It is 4. 4 is less than 5 so you keep 6 the same. Now you make the rest 0s, except for the 1 before the 6. The estimate would be 16,000.
Answer:
John should use:
4 grams of the 30% solution and 16 grams of the 60% solution
Step-by-step explanation:
Let the number of grams of the 30% solution = x
Let the number of grams of the 60% solution = y
John needs 20 grams of 54% acid solution for his science project.
Hence,
x + y = 20 grams..... Equation 1
x = 20 - y
His school's science lab has bottles of 30% solution and bottles of 60% solution.
30% × x + 60% × y = 54% × 20
0.3x + 0.6y = 10.8......Equation 2
We substitute 20 - y for x in Equation 2
0.3(20 - y) + 0.6y = 10.8
6 - 0.3y + 0.6y = 10.8
- 0.3y + 0.6y = 10.8 - 6
0.3y = 4.8
y = 4.8/3
y = 16 grams
x = 20 - y
x = 20 - 16
x = 4 grams
Therefore, John should use:
4 grams of the 30% solution and 16 grams of the 60% solution
Answer:
21 pizza soccer
Step-by-step explanation:
<em><u>ANSWER</u></em>
<em>Since </em><em>probably </em><em>part </em><em>of </em><em>the</em><em> </em><em>pie </em><em>was </em><em>already </em><em>eaten </em><em>therefore </em><em>we </em><em>find </em><em>the </em><em>fration </em><em>of </em><em>the </em><em>pie </em><em>in </em><em>the </em><em>beginning</em><em> </em><em>which </em><em>is</em>
<em>=</em><em> </em><em>1</em><em> </em>
<em>=</em><em> </em><em>5</em><em>/</em><em>5</em>
<em><u>Fraction </u></em><em><u>William </u></em><em><u>ate;</u></em>
<em>=</em><em> </em><em>3</em><em>/</em><em>4</em><em> </em><em> </em><em>of </em><em>1</em>
<em>=</em><em> </em><em>3</em><em>/</em><em>4</em><em> </em><em>of </em><em>5</em><em>/</em><em>5</em>
<em>=</em><em> </em><em>3</em><em>/</em><em>4</em><em> </em><em>×</em><em> </em><em>5</em><em>/</em><em>5</em>
<em>=</em><em> </em><em>3</em><em>/</em><em>4</em>
<em> </em>
<em><u>CONCLUSION</u></em>
A fraction is a part of a whole so no matter how the fraction would increase or decrease the part William ate will remain the same