Answer:
This is 0.14 to the nearest hundredth
Step-by-step explanation:
Firstly we list the parameters;
Drive to school = 40
Take the bus = 50
Walk = 10
Sophomore = 30
Junior = 35
Senior = 35
Total number of students in sample is 100
Let W be the event that a student walked to school
So P(w) = 10/100 = 0.1
Let S be the event that a student is a senior
P(S) = 35/100 = 0.35
The probability we want to calculate can be said to be;
Probability that a student walked to school given that he is a senior
This can be represented and calculated as follows;
P( w| s) = P( w n s) / P(s)
w n s is the probability that a student walked to school and he is a senior
We need to know the number of seniors who walked to school
From the table, this is 5/100 = 0.05
So the Conditional probability is as follows;
P(W | S ) = 0.05/0.35 = 0.1429
To the nearest hundredth, that is 0.14
Answer:
39 maybe i don't know
Step-by-step explanation:
Answer:
Ok, as i understand it:
for a point P = (x, y)
The values of x and y can be randomly chosen from the set {1, 2, ..., 10}
We want to find the probability that the point P lies on the second quadrant:
First, what type of points are located in the second quadrant?
We should have a value negative for x, and positive for y.
But in our set; {1, 2, ..., 10}, we have only positive values.
So x can not be negative, this means that the point can never be on the second quadrant.
So the probability is 0.