There is no correct answer here it depends on your body and how fast your motabolism is.
Answer:
The two main reasons are nonpolar core of the bilayer and the active transport.
Explanation:
The membrane is structured to have two outer layers that are polar and an inner layer that is nonpolar.
If a membrane protein is exposed to the solvent, i<em>t will also have a polar side. It would be very difficult for the polar face of the membrane to move through the nonpolar core of the bilayer.</em> Therefore, this model is not feasible.
One major form of transport, active transport, moves solutes up the concentration gradient. <em>The binding of a solute and then release on another side of the membrane would only work for facilitated diffusion because it would cause a net movement of solutes down the concentration gradient.</em> It is unclear how energy could be expended to drive this process in the transverse carrier model.<em> Therefore, the transverse carrier model does not explain active transport.</em>
<span>Basically both operate by bouncing tiny particles or waves off of objects in order to make them visible. Electrons are smaller than light photons so we can see smaller objects clearly with electron microscopes. There are disadvantages though. First, color is a function of light wave frequency so we can't see electron micrographs in color. Color can be added artificially though by computer to differentiate structures, (think photoshop). Also, we cannot see electrons so we make them visible by bouncing them off a cathode ray screen similar to a TV set or computer monitor</span>
Food was cooked, quickly frozen, and then dehydrated in a special vacuum chamber. Freeze-dried food didn't need to be refrigerated and would last a long time. To make most freeze-dried foods, astronauts squeeze water into the food packages and then eat the food after it absorbs the water.