1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
4 years ago
5

15 PTS!!!!!!!!!!

Mathematics
1 answer:
skelet666 [1.2K]4 years ago
3 0

Answer:

C.

Step-by-step explanation:

the number two is 3 times the size of 2/3

2 = 3 * 2/3

You might be interested in
What's 2/4 x 1/3? And pls provide work on how u got the answer.
igomit [66]
Just multiply the top number by the top number and the bottom numbers by the bottom numbers so


2/4 times 1/3=(2 times 1)/(4 times 3)=2/12

so to simplify, we find the ones exg 4/8=1/2 because 1/2 times 4/4=4/8 and 4/4 cancels out so

2/12=2/2 times 1/6
=1/6
8 0
3 years ago
Read 2 more answers
Hey! i’ll give brainliest please help
Elan Coil [88]

Answer:

I would assume it to be the second option, or B.

'The bogs the moose lived in became so soggy that only moose with the largest feet could successfully walk on the bog'

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Find the area of each regular polygon. Round your answer to the nearest tenth if necessary.
tatuchka [14]

*I am assuming that the hexagons in all questions are regular and the triangle in (24) is equilateral*

(21)

Area of a Regular Hexagon: \frac{3\sqrt{3}}{2}(side)^{2} = \frac{3\sqrt{3}}{2}*(\frac{20\sqrt{3} }{3} )^{2} =200\sqrt{3} square units

(22)

Similar to (21)

Area = 216\sqrt{3} square units

(23)

For this case, we will have to consider the relation between the side and inradius of the hexagon. Since, a hexagon is basically a combination of six equilateral triangles, the inradius of the hexagon is basically the altitude of one of the six equilateral triangles. The relation between altitude of an equilateral triangle and its side is given by:

altitude=\frac{\sqrt{3}}{2}*side

side = \frac{36}{\sqrt{3}}

Hence, area of the hexagon will be: 648\sqrt{3} square units

(24)

Given is the inradius of an equilateral triangle.

Inradius = \frac{\sqrt{3}}{6}*side

Substituting the value of inradius and calculating the length of the side of the equilateral triangle:

Side = 16 units

Area of equilateral triangle = \frac{\sqrt{3}}{4}*(side)^{2} = \frac{\sqrt{3}}{4}*256 = 64\sqrt{3} square units

4 0
3 years ago
Given 2x - y = 6, solve for y
Naddik [55]
Solve for y ans

y=2x-6
4 0
3 years ago
Read 2 more answers
Identify tan P as a fraction and as a decimal rounded to the nearest hundredth. HELP PLEASE!!
KonstantinChe [14]
<h3>Answer: Choice C</h3>

================================================

Work Shown:

Reference angle = P

Opposite side = QR = 8.5

Adjacent side = QP = 16

tan(angle) = opposite/adjacent

tan(P) = QR/QP

tan(P) = 8.5/16

tan(P) = 0.53125

tan(P) = 0.53

6 0
3 years ago
Other questions:
  • What to the power of 4 equals 256
    8·2 answers
  • Solve the quadratic function by completing the square. <br> –32 = 2(x2 + 10x)
    10·1 answer
  • Which is the graph of 3x-2y=6
    10·2 answers
  • A subway vending machine offers a bonus on
    5·1 answer
  • Which of the following is an example of a quadratic equation?
    11·1 answer
  • Here is another question. It wants me to solve it
    7·2 answers
  • What is the value of x in:<br>3x + 2(x + 1) = 12?<br>A.12<br>B.6 <br>C.10<br>D.2​
    14·2 answers
  • An art teacher needs to cut out squares of paper for an art project from a left-over sheet of paper measuring 72 x 104 inches. W
    12·1 answer
  • HELP ME PLEASE I'll give brainliest
    14·2 answers
  • 9:00 oclock as a fraction in its lowest form​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!