1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
3 years ago
5

PLEASE HELP ASAP!!!!

Mathematics
1 answer:
spin [16.1K]3 years ago
3 0

It is easy! I got you! So if Gavin earned $25 more then Seiji and the total of money they got over the summer is $425, all you have to do is subtract, so 425- 25= 400. Seiji earned s and Gavin earned g.

You might be interested in
Rewrite the quadratic y=3(x-2)^2-7 in standard form​
DochEvi [55]

Answer:

The answer is

y=3/(x-2)^5

8 0
2 years ago
How would you change 18/7 into a mix number?
RSB [31]

How many times does 18 go into 7? The answer is 2 times since 14/7 = 2 and we'll have 4 left over. We can say that 18/7 = 2 remainder 4. The remainder of 4 is placed over the denominator 7 to indicate we a fractional part.

Therefore, 18/7 = 2 & 4/7

6 0
3 years ago
Write (8a-^3) -2/3 in simplest form
Anna71 [15]

(8a^{-3})^{\frac{-2}{3}} = \frac{a^2}{4}

<em><u>Solution:</u></em>

<em><u>Given that,</u></em>

(8a^{-3})^{\frac{-2}{3}

We have to write in simplest form

<em><u>Use the following law of exponent</u></em>

(a^m)^n = a^{mn}

Using this, simplify the given expression

(8a^{-3})^{\frac{-2}{3}} = 8^{\frac{-2}{3}} \times a^{ -3 \times \frac{-2}{3}}\\\\Simplifying\ we\ get\\\\(8a^{-3})^{\frac{-2}{3}} = 8^{\frac{-2}{3}} \times a^2\\\\We\ know\ that\ 8 = 2^3\\\\Therefore\\\\(8a^{-3})^{\frac{-2}{3}} =2^3^{\frac{-2}{3}} \times a^2\\\\(8a^{-3})^{\frac{-2}{3}} =2^{-2} \times a^2\\\\(8a^{-3})^{\frac{-2}{3}} = \frac{a^2}{4}

Thus the given expression is simplified

8 0
3 years ago
Recycled​ CDs, Incorporated, offers a choice of 5 used CDs for ​$27​, with each additional CD costing ​$5. Write a cost function
notka56 [123]

A function assigns the values. The cost of 6 CDs will be $32.

<h3>What is a Function?</h3>

A function assigns the value of each element of one set to the other specific element of another set.

Given that the Recycled​ CDs. Incorporated, offers a choice of 5 used CDs for ​$27​, with each additional CD costing ​$5. Therefore, a cost function for purchasing 5 or more CDs, where x represents the number of CDs over 5 can be written as,

C(x) = $27 + $5(x)

Now, if 6 CDs are purchased then the number of CDs that are more than 5 is 1. therefore, the cost of 6 CDs will be,

C(1) = $27 + $5(1)

     = $27 + $5

     = $32

Hence, the cost of 6 CDs will be $32.

Learn more about Function here:

brainly.com/question/5245372

#SPJ1

8 0
1 year ago
Typing errors in a text are either nonword errors (as when "the" is typed as "teh") or word errors that result in a real but inc
nordsb [41]

Answer:

a) X is binomial with n = 10 and p = 0.3

Y is binomial with n = 10 and p = 0.7

b) The mean number of errors caught is 7.

The mean number of errors missed is 3.

c) The standard deviation of the number of errors caught is 1.4491.

The standard deviation of the number of errors missed is 1.4491.

Step-by-step explanation:

For each typing error, there are only two possible outcomes. Either it is caught, or it is not. The probability of a typing error being caught is independent of other errors. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

The expected value of the binomial distribution is:

E(X) = np

The standard deviation of the binomial distribution is:

\sqrt{V(X)} = \sqrt{np(1-p)}

10 word errors.

This means that n = 10

(a) If X is the number of word errors missed, what is the distribution of X ?

Human proofreaders catch 70 % of word errors. This means that they miss 30% of errors.

So for X, p = 0.3.

The answer is:

X is binomial with n = 10 and p = 0.3.

If Y is the number of word errors caught, what is the distribution of Y ?

Human proofreaders catch 70 % of word errors.

So for Y, p = 0.7.

The answer is:

Y is binomial with n = 10 and p = 0.7

(b) What is the mean number of errors caught?

E(Y) = np = 10*0.7 = 7

The mean number of errors caught is 7.

What is the mean number of errors missed?

E(X) = np = 10*0.3 = 3

The mean number of errors missed is 3.

(c) What is the standard deviation of the number of errors caught?

\sqrt{V(Y)} = \sqrt{np(1-p)} = \sqrt{10*0.7*0.3} = 1.4491

The standard deviation of the number of errors caught is 1.4491.

What is the standard deviation of the number of errors missed?

\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{10*0.3*0.7} = 1.4491

The standard deviation of the number of errors missed is 1.4491.

6 0
2 years ago
Other questions:
  • The diameter of a circle is 3 times the side length of a square . If the square has an area if 144, what is the length of the ra
    5·1 answer
  • Calculate the sum of the infinite series
    9·2 answers
  • GUYS I NEED HELP ASAP!!!<br><br> Help me solve ?
    15·1 answer
  • What is 0.56 as a fraction
    11·1 answer
  • Find the standard deviation: 55,55,55,55,55,55
    11·1 answer
  • Does anyone know the answer to this question?
    9·1 answer
  • Approximate the value of each expression shown. Explain your reasoning. <br> a.√ 38<br> b. √ 79
    10·1 answer
  • Y 2 + 5y Choose the constant term that completes the perfect square trinomial.
    5·1 answer
  • Split the number 76 into the ratio 6:3:7:3 .
    6·1 answer
  • The ideal gas law states that the volume, v, of a gas in liters varies directly with the amount of the gas in moles, n, and the
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!