Answer:
2 inches per hour, 5 inches, y=2x+5
Step-by-step explanation:
No, I don't think I will
 
        
             
        
        
        
Answer:
60%
Step-by-step explanation:
we know that
the price per share of a stock decreased from $90 per share to $36 per share
In this problem 
$90 represent the 100%
so
using proportion
Find out what percentage represent the difference of ($90-$36)
($90-$36)=$54
Let
x ----> the percentage of the difference 

 
        
             
        
        
        
Answer:
Don't need Help don't depend on others do you'r work by yourself why you came to this world for asking help from other not do your work by yourself.Today I am going to help but from tomorrow you have to do by yourself
Step-by-step explanation:
=2x+3x8
=add
=5x8
=x=5=8/2
=x=5/4 is your answer
 
        
                    
             
        
        
        
Part A
Everything looks good but line 4. You need to put all of the "2h" in parenthesis so the teacher will know you are squaring all of 2h. As you have it right now, you are saying "only square the h, not the 2". Be careful as silly mistakes like this will often cost you points. 
============================================================
Part B
It looks like you have the right answer. Though you'll need to use parenthesis to ensure that all of "75t/(2pi)" is under the cube root. I'm assuming you made a typo or forgot to put the parenthesis. 
dh/dt = (25)/(2pi*h^2)
2pi*h^2*dh = 25*dt
int[ 2pi*h^2*dh ] = int[ 25*dt ] ... applying integral to both sides
(2/3)pi*h^3 = 25t + C
2pi*h^3 = 3(25t + C)
h^3 = (3(25t + C))/(2pi)
h^3 = (75t + 3C)/(2pi)
h^3 = (75t + C)/(2pi)
h = [ (75t + C)/(2pi) ]^(1/3)
Plug in the initial conditions. If the volume is V = 0 then the height is h = 0 at time t = 0
0 = [ (75(0) + C)/(2pi) ]^(1/3)
0 = [ (0 + C)/(2pi) ]^(1/3)
0 = [ (C)/(2pi) ]^(1/3)
0^3 =  (C)/(2pi)
0 = C/(2pi)
C/(2pi) = 0
C = 0*2pi
C = 0 
Therefore the h(t) function is...
h(t) = [ (75t + C)/(2pi) ]^(1/3)
h(t) = [ (75t + 0)/(2pi) ]^(1/3)
h(t) = [ (75t)/(2pi) ]^(1/3)
Answer:
h(t) = [ (75t)/(2pi) ]^(1/3)
============================================================
Part C
Your answer is correct. 
Below is an alternative way to find the same answer
--------------------------------------
Plug in the given height; solve for t
h(t) = [ (75t)/(2pi) ]^(1/3)
8 = [ (75t)/(2pi) ]^(1/3)
8^3 = (75t)/(2pi)
512 = (75t)/(2pi)
(75t)/(2pi) = 512
75t = 512*2pi
75t = 1024pi
t = 1024pi/75
At this time value, the height of the water is 8 feet
Set up the radius r(t) function 
r = 2*h
r = 2*h(t)
r = 2*[ (75t)/(2pi) ]^(1/3) .... using the answer from part B
Differentiate that r(t) function with respect to t
r = 2*[ (75t)/(2pi) ]^(1/3)
dr/dt = 2*(1/3)*[ (75t)/(2pi) ]^(1/3-1)*d/dt[(75t)/(2pi)] 
dr/dt = (2/3)*[ (75t)/(2pi) ]^(-2/3)*(75/(2pi))
dr/dt = (2/3)*(75/(2pi))*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
Plug in t = 1024pi/75 found earlier above
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75(1024pi/75))/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (1024pi)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*(1/64)
dr/dt = 25/(64pi)
getting the same answer as before
----------------------------
Thinking back as I finish up, your method is definitely shorter and more efficient. So I prefer your method, which is effectively this:
r = 2h, dr/dh = 2
dh/dt = (25)/(2pi*h^2) ... from part A
dr/dt = dr/dh*dh/dt ... chain rule
dr/dt = 2*((25)/(2pi*h^2))
dr/dt = ((25)/(pi*h^2))
dr/dt = ((25)/(pi*8^2)) ... plugging in h = 8
dr/dt = (25)/(64pi)
which is what you stated in your screenshot (though I added on the line dr/dt = dr/dh*dh/dt to show the chain rule in action)