1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Travka [436]
3 years ago
10

Question (c)! How do I know that t^5-10t^3+5t=0? Thanks!

Mathematics
1 answer:
astra-53 [7]3 years ago
3 0
(a) By DeMoivre's theorem, we have

(\cos\theta+i\sin\theta)^5=\cos5\theta+i\sin5\theta

On the LHS, expanding yields

\cos^5\theta+5i\cos^4\theta\sin\theta-10\cos^3\theta\sin^2\theta-10i\cos^2\theta\sin^3\theta+5\cos\theta\sin^4\theta+i\sin^4\theta

Matching up real and imaginary parts, we have for (i) and (ii),


\cos5\theta=\cos^5\theta-10\cos^3\theta\sin^2\theta+5\cos\theta\sin^4\theta
\sin5\theta=5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta

(b) By the definition of the tangent function,

\tan5\theta=\dfrac{\sin5\theta}{\cos5\theta}
=\dfrac{5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta}{\cos^5\theta-10\cos^3\theta\sin^2\theta+5\cos\theta\sin^4\theta}

=\dfrac{5\tan\theta-10\tan^3\theta+\tan^5\theta}{1-10\tan^2\theta+5\tan^4\theta}
=\dfrac{t^5-10t^3+5t}{5t^4-10t^2+1}


(c) Setting \theta=\dfrac\pi5, we have t=\tan\dfrac\pi5 and \tan5\left(\dfrac\pi5\right)=\tan\pi=0. So

0=\dfrac{t^5-10t^3+5t}{5t^4-10t^2+1}

At the given value of t, the denominator is a non-zero number, so only the numerator can contribute to this reducing to 0.


0=t^5-10t^3+5t\implies0=t^4-10t^2+5

Remember, this is saying that

0=\tan^4\dfrac\pi5-10\tan^2\dfrac\pi5+5

If we replace \tan^2\dfrac\pi5 with a variable x, then the above means \tan^2\dfrac\pi5 is a root to the quadratic equation,

x^2-10x+5=0

Also, if \theta=\dfrac{2\pi}5, then t=\tan\dfrac{2\pi}5 and \tan5\left(\dfrac{2\pi}5\right)=\tan2\pi=0. So by a similar argument as above, we deduce that \tan^2\dfrac{2\pi}5 is also a root to the quadratic equation above.

(d) We know both roots to the quadratic above. The fundamental theorem of algebra lets us write

x^2-10x+5=\left(x-\tan^2\dfrac\pi5\right)\left(x-\tan^2\dfrac{2\pi}5\right)

Expand the RHS and match up terms of the same power. In particular, the constant terms satisfy

5=\tan^2\dfrac\pi5\tan^2\dfrac{2\pi}5\implies\tan\dfrac\pi5\tan\dfrac{2\pi}5=\pm\sqrt5

But \tanx>0 for all 0, as is the case for x=\dfrac\pi5 and x=\dfrac{2\pi}5, so we choose the positive root.
You might be interested in
What is all of the surface area and volume of this Castle? Find the surface area and volume of all the figures below, then out o
motikmotik

Answer:

Step-by-step explanation:

There are a few formulas that are useful for this:

  • lateral area of a pyramid or cone: LA = 1/2·Ph, where P is the perimeter and h is the slant height
  • lateral area of a cylinder: LA = π·dh, where d is the diameter and h is the height
  • area of a rectangle: A = lw, where l is the length and w is the width
  • volume of a cone or pyramid: V = 1/3·Bh, where B is the area of the base and h is the height
  • volume of a cylinder or prism: V = Bh, where B is the area of the base and h is the height

You will notice that for lateral area purposes, a pyramid or cone is equivalent to a prism or cylinder of height equal to half the slant height. And for volume purposes, the volume of a pyramid or cone is equal to the volume of a prism or cylinder with the same base area and 1/3 the height.

Since the measurements are given in cm, we will use cm for linear dimensions, cm^2 for area, and cm^3 for volume.

___

The heights of the cones at the top of the towers can be found from the Pythagorean theorem.

  (slant height)^2 = (height)^2 + (radius)^2

  height = √((slant height)^2 - (radius)^2) = √(10^2 -5^2) = √75 = 5√3

The heights of the pyramids can be found the same way.

  height = √(13^2 -2^2) = √165

___

<u>Area</u>

The total area of the castle will be ...

  total castle area = castle lateral area + castle base area

These pieces of the total area are made up of sums of their own:

  castle lateral area = cone lateral area + pyramid lateral area + cylinder lateral area + cutout prism lateral area

and ...

  castle base area = cylinder base area + cutout prism base area

So, the pieces of area we need to find are ...

  • cone lateral area (2 identical cones)
  • pyramid lateral area (2 identical pyramids)
  • cylinder lateral area (3 cylinders, of which 2 are the same)
  • cutout prism lateral area
  • cylinder base area (3 cylinders of which 2 are the same)
  • cutout prism base area

Here we go ...

Based on the above discussion, we can add 1/2 the slant height of the cone to the height of the cylinder and figure the lateral area of both at once:

  area of one cone and cylinder = π·10·(18 +10/2) = 230π

  area of cylinder with no cone = top area + lateral area = π·1^2 +π·2·16 = 33π

  area of one pyramid = 4·4·(13/2) = 52

The cutout prism outside face area is equivalent to the product of its base perimeter and its height, less the area of the rectangular cutouts at the top of the front and back, plus the area of the inside faces (both vertical and horizontal).

  outside face area = 2((23+4)·11 -3·(23-8)) = 2(297 -45) = 504

  inside face area = (3 +(23-8) +3)·4 = 84

So the lateral area of the castle is ...

  castle lateral area = 2(230π + 52) +33π + 504 + 84 = 493π +692

  ≈ 2240.805 . . . . cm^2

The castle base area is the area of the 23×4 rectangle plus the areas of the three cylinder bases:

  cylinder base area = 2(π·5^2) + π·1^2 = 51π

  prism base area = 23·4 = 92

  castle base area = 51π + 92 ≈ 252.221 . . . . cm^2

Total castle area = (2240.805 +252.221) cm^2 ≈ 2493.0 cm^2

___

<u>Volume</u>

The total castle volume will be ...

  total castle volume = castle cylinder volume + castle cone volume + castle pyramid volume + cutout prism volume

As we discussed above, we can combine the cone and cylinder volumes by using 1/3 the height of the cone.

  volume of one castle cylinder and cone = π(5^2)(18 + (5√3)/3)

  = 450π +125π/√3 ≈ 1640.442 . . . . cm^3

 volume of flat-top cylinder = π·1^2·16 = 16π ≈ 50.265 . . . . cm^3

The volume of one pyramid is ...

  (1/2)4^2·√165 = 8√165 ≈ 102.762 . . . . cm^3

The volume of the entire (non-cut-out) castle prism is the product of its base area and height:

  non-cutout prism volume = (23·4)·11 = 1012 . . . . cm^3

The volume of the cutout is similarly the product of its dimensions:

  cutout volume = (23 -8)·4·3 = 180 . . . . cm^3

so, the volume of the cutout prism is ...

  cutout prism volume = non-cutout prism volume - cutout volume

  = 1012 -180 = 832 . . . .  cm^3

Then the total castle volume is ...

  total castle volume = 2·(volume of one cylinder and cone) + (volume of flat-top cylinder) +2·(volume of one pyramid) +(cutout prism volume)

  = 2(1640.442) + 50.265 +2(102.762) +832 ≈ 4368.7 . . . . cm^3

4 0
2 years ago
What is the area of the trapezoid?
Assoli18 [71]

Answer:

a+b/2×h=56

Step-by-step explanation:

thanks needed.......

3 0
2 years ago
Read 2 more answers
What is the area of the triangle?
fomenos

Answer:

1012.5

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
If - 7 = 9 + x, then -3x + 5 = ?
Vikentia [17]

Answer:

53

Step-by-step explanation:

At first,

- 7 = 9 + x

By subtracting 9 from both sides, we get

-7-9=9+x-9

-16=x

Now,

By substituting the value of x in -3x + 5 , we get

-3x + 5

-3×(-16)+5

48+5

53

8 0
2 years ago
Un numero tal que el triple de el sea la sexta parte de su cuadrado​
Lunna [17]

Answer:

i dont speak spanish :( sorry

Step-by-step explanation:

4 0
2 years ago
Other questions:
  • A number n is less than 6 units from 0. Write an absolute value inequality
    13·2 answers
  • Find 4 consecutive odd integers where the product of the two smaller numbers is 64 less than the product of the two larger numbe
    10·2 answers
  • Daniel owed his mom $5 yesterday. That amount tripled today after he borrowed money to buy a CD. Which of the following expressi
    12·2 answers
  • Please help me! Will give brainliest!
    12·1 answer
  • Anybody know the answer?
    11·1 answer
  • Which of the following proportions could be used to convert 6 days to hours?
    12·1 answer
  • PLEASE HELP!! DUE SOON :( Question: Find the value of x.
    14·1 answer
  • Lamar buys $75 worth of clothes. He pays $81, including sales tax. What is the tax rate?
    6·1 answer
  • Suppose a random sample of n measurements is selected from a binomial population with probability of success p = .39. Given n =
    10·1 answer
  • What is the length of the hypotenuse?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!