1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Trava [24]
3 years ago
12

Here is a table of values for y=

Mathematics
1 answer:
Semmy [17]3 years ago
4 0

Answer:

The true statements are

The domain for f(x) is the set {-5, -3, 0, 2, 6, 7, 9, 10, 13}

f(-3) = 2

Extra:

x -5 -3 0 2 6 7 9 10 13

f(x) 1 2 3 0 1 2 3 0 1

You might be interested in
Surface area of the triangle game case
julia-pushkina [17]
I believe its 147 in ² :))))))

2(10*3)=60

2(1/2*10*8.7)=87

60+87=147
3 0
4 years ago
Read 2 more answers
True or False: If a chi-square test is significant (i.e., there is an association between the variables), we should look at the
AnnyKZ [126]

Answer: True.

Step-by-step explanation:

A conditional distribution in this case is a probability distribution for a sub-population. In other words, it represent the probability that a randomly selected item in a sub-population has a characteristic we’are interested in .

Partitioning the popular action assist us to see if the sub-population contains the characteristics we ere interested in I.e . Association

7 0
3 years ago
The greatest common factor(GCF) of LaTeX: x^7,\:x^3,\:x^5\:is\:_{ }__________.
wolverine [178]

Answer:

<h3>x^3</h3>

Step-by-step explanation:

We are to find the greatest common factor of x^7, x^3 and x^5

x^7 = x^3 * x^4

x^3 = x^3 * 1

x^5 = x^3 * x^2

From both factors, we cam see that x^3 is common to the three, hence the GCF is x^3

7 0
3 years ago
hal says that the greatest product of a 3-digit number and a 1-digit number is 8,891. Is he correct? Expland
spin [16.1K]
No it would be 8991 because the highest 3 digit number (999) multiplied by the greatest 1 digit number (9) would be 8991 so Hal is wrong.
6 0
4 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
Other questions:
  • A construction crew has just finished building a road. The road is 8 2/5 kilometers long. If the crew worked for 6 days, how man
    15·1 answer
  • How do you put 0.375,0.300,and 0.387 in order from least to greatest
    5·2 answers
  • How can u tell without computing whether the quotient 1/2 divided 6 is greater or less than 1
    15·1 answer
  • What number is 24 more than its opposite?
    6·2 answers
  • What do you notice about the products of two integers with different signs
    13·2 answers
  • The equation y=2/3x describes the number of calls y a salesperson makes in x minutes. How does y change as x changes?
    9·1 answer
  • In the school band, there are 4 trumpet players and F flute players.The total number of trumpet and flute players is 12. Are the
    10·2 answers
  • The length of a rectangle is five times its width. The perimeter of the rectangle is at most 96 cm.
    5·2 answers
  • I need help plzzzzzz
    11·2 answers
  • Can yu guys help me out
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!