Those two numbers are 30 and 12.
30+12=42
and
30*12=360
:P
Y = |x² - 3x + 1|
y = x - 1
|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1) or |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1) or |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1 or |x² - 3x + 1| = -x + 1
x² - 3x + 1 = x - 1 or x² - 3x + 1 = -x + 1
- x - x + x + x
x² - 4x + 1 = -1 or x² - 2x + 1 = 1
+ 1 + 1 - 1 - 1
x² - 4x + 1 = 0 or x² - 2x + 0 = 0
x = -(-4) ± √((-4)² - 4(1)(1)) or x = -(-2) ± √((-2)² - 4(1)(0))
2(1) 2(1)
x = 4 ± √(16 - 4) or x = 2 ± √(4 - 0)
2 2
x = 4 ± √(12) or x = 2 ± √(4)
2 2
x = 4 ± 2√(3) or x = 2 ± 2
2 2
x = 2 ± √(3) or x = 1 ± 1
x = 2 + √(3) or x = 2 - √(3) or x = 1 + 1 or x = 1 - 1
x = 2 or x = 0
y = x - 1 or y = x - 1 or y = x - 1 or y = x - 1
y = (2 + √(3)) - 1 or y = (2 - √(3)) - 1 or y = 2 - 1 or y = 0 - 1
y = 2 - 1 + √(3) or y = 2 - 1 - √(3) or y = 1 or y = -1
y = 1 + √(3) or y = 1 - √(3) (x, y) = (2, 1) or (x, y) = (0, -1)
(x, y) = (2 ± √(3), 1 ± √(3))
The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
Answer:
The answer is 95cm2
Step-by-step explanation:
A=b×h
=19×5
= 95 cm2
please mark me the brainliest
The answer to the problem is
y=1/2x
Hello Rebelkid2004, 532 with a remainder
is, gives remainder 0 and so are divisible by 1, we get factors of 532 numbers by finding numbers that can divide 532
without remainder or alternatively numbers that can multiply together to
equal the target number being converted.