Answer:

Step-by-step explanation:
We are given that

Differentiate w.r.t x

By using formula







Hence, the derivative of function

Answer:
With a .95 probability, the sample size that needs to be taken if the desired margin of error is .04 or less is of at least 216.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error:

For this problem, we have that:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
With a .95 probability, the sample size that needs to be taken if the desired margin of error is .04 or less is
We need a sample size of at least n, in which n is found M = 0.04.







With a .95 probability, the sample size that needs to be taken if the desired margin of error is .04 or less is of at least 216.
south side of town? I think
The volume goes up by a factor of 2 * 2 * 3 = 12 times.
Answer:
The absolute number of a number a is written as
|a|
And represents the distance between a and 0 on a number line.
An absolute value equation is an equation that contains an absolute value expression. The equation
|x|=a
Has two solutions x = a and x = -a because both numbers are at the distance a from 0.
To solve an absolute value equation as
|x+7|=14
You begin by making it into two separate equations and then solving them separately.
x+7=14
x+7−7=14−7
x=7
or
x+7=−14
x+7−7=−14−7
x=−21
An absolute value equation has no solution if the absolute value expression equals a negative number since an absolute value can never be negative.
The inequality
|x|<2
Represents the distance between x and 0 that is less than 2
Whereas the inequality
|x|>2
Represents the distance between x and 0 that is greater than 2
You can write an absolute value inequality as a compound inequality.
−2<x<2
This holds true for all absolute value inequalities.
|ax+b|<c,wherec>0
=−c<ax+b<c
|ax+b|>c,wherec>0
=ax+b<−corax+b>c
You can replace > above with ≥ and < with ≤.
When solving an absolute value inequality it's necessary to first isolate the absolute value expression on one side of the inequality before solving the inequality.
Step-by-step explanation:
Hope this helps :)