The ground finches adapted to have larger beaks to eat the bigger seeds in the drier seasons. This means over the years only the bigger beaked finches could survive to reproduce.
They build up in the thylakoid, where they bond to each other to create ATP.
Not 100% about this but that's what i got.
Answer:
1/8 (12.5%)
Explanation:
An autosomal recessive disease is an inherited disease in which an individual need to receive both defective alleles at the same gene <em>locus</em> to be expressed in the phenotype. In this case, both parents are carriers of the recessive mutant allele associated with the sickle cell anaemia trait, thereby both parents are heterozygous, ie., each parent has one copy of the normal allele 'H' and one copy of the defective mutant allele 'h' associated with this condition. In consequence, their first child has a 1/4 (25%) chance of having sickle-cell anaemia. Moreover, the chance of having a girl is 1/2 and the chance of having a boy is 1/2, thereby the final chance of having a girl sickle cell anaemia individual is 1/4 x 1/2 = 1/8 (12.5%).
- Parental cross for sickle cell anaemia trait = Hh x Hh >>
- F1 = 1/4 HH (normal); 1/2 Hh (normal); 1/4 hh (sickle cell anaemia) >>
- Sex proportion of sickle cell anaemia individuals = 1/8 female sickle cell anaemia individuals + 1/8 male sickle cell anaemia individuals (1/8 + 1/8 = 1/4)
Group IV of the Periodic Table of the Elements contains carbon (C), silicon (Si) and several heavy metals. Carbon, of course, is the building block of life as we know it. So is it possible that a planet exists in some other solar system where silicon substitutes for carbon? Several science fiction stories feature silicon-based life-forms--sentient crystals, gruesome golden grains of sand and even a creature whose spoor or scat was bricks of silica left behind. The novellas are good reading, but there are a few problems with the chemistry.
<span>
CRYSTALLINE CREATURES? Silicon can grow into a number of lifelike structures, but its chemistry makes it unlikely that it could be the basis for alien life-forms.</span>
Indeed, carbon and silicon share many characteristics. Each has a so-called valence of four--meaning that individual atoms make four bonds with other elements in forming chemical compounds. Each element bonds to oxygen. Each forms long chains, called polymers, in which it alternates with oxygen. In the simplest case, carbon yields a polymer called poly-acetal, a plastic used in synthetic fibers and equipment. Silicon yields polymeric silicones, which we use to waterproof cloth or lubricate metal and plastic parts.