1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
4 years ago
9

Please answer all three

Mathematics
1 answer:
alexdok [17]4 years ago
5 0
<h2>                        Question # 7</h2>

Answer:

We conclude that the statement B is true. The solution is also attached below.

Step-by-step Explanation:

As the inequality graphed on the number line showing that solution must be   < x    (-∞, 3] U [5, ∞)

So, lets check the statements to know which statement has this solution.

Analyzing statement A)

x^2-3x+5>\:0

\mathrm{Write}\:x^2-3x+5\:\mathrm{in\:the\:form:\:\:}x^2+2ax+a^2

2a=-3\quad :\quad a=-\frac{3}{2}

\mathrm{Add\:and\:subtract}\:\left(-\frac{3}{2}\right)^2\:

x^2-3x+5+\left(-\frac{3}{2}\right)^2-\left(-\frac{3}{2}\right)^2

\mathrm{Complete\:the\:square}

\left(x-\frac{3}{2}\right)^2+5-\left(-\frac{3}{2}\right)^2

\mathrm{Simplify}

\left(x-\frac{3}{2}\right)^2+\frac{11}{4}

So,

\left(x-\frac{3}{2}\right)^2>-\frac{11}{4}

Thus,

x^2-3x+5>0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:\mathrm{True\:for\:all}\:x\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Therefore, option A) is FALSE.

Analyzing statement B)

(x + 3) (x - 5) ≥ 0

x^2-2x-15\ge 0

\left(x+3\right)\left(x-5\right)=0       \left(Factor\:left\:side\:of\:equation\right)

x+3=0\:or\:x-5=0

x=-3\:or\:x=5

So

x\le \:-3\quad \mathrm{or}\quad \:x\ge \:5

Thus,

\left(x+3\right)\left(x-5\right)\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-3\quad \mathrm{or}\quad \:x\ge \:5\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-3]\cup \:[5,\:\infty \:)\end{bmatrix}

Therefore, the statement B is true.

Solution is also attached below.

Analyzing statement C)

x^2+2x-15\ge 0

\mathrm{Factor}\:x^2+2x-15:\quad \left(x-3\right)\left(x+5\right)

So,

x\le \:-5\quad \mathrm{or}\quad \:x\ge \:3

x^2+2x-15\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-5\quad \mathrm{or}\quad \:x\ge \:3\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-5]\cup \:[3,\:\infty \:)\end{bmatrix}

Therefore, option C) is FALSE.

Analyzing statement D)

- 3 < x < 5

-3

Therefore, option D) is FALSE.

Analyzing statement E)

None of the above

The statement E) is False also as the statement B represents the correct solution.

Therefore, from the discussion above, we conclude that the statement B is true. The solution is also attached below.

<h2>                          Question # 8</h2>

Find the number that is \frac{1}{3} of the way from \:2\frac{1}{6} to \:5\frac{1}{4}.

Answer:

Therefore, \frac{37}{36} is the number that is  \frac{1}{3} of the way from  \:2\frac{1}{6} to \:5\frac{1}{4}.

Step-by-step Explanation:

\mathrm{Convert\:mixed\:numbers\:to\:improper\:fraction:}\:a\frac{b}{c}=\frac{a\cdot \:c+b}{c}

So,

2\frac{1}{6}=\frac{13}{6}

5\frac{1}{4}=\frac{21}{4}

As the length from \frac{21}{4} to \frac{13}{6} is

\frac{21}{4}-\frac{13}{6}=\frac{37}{12}

Now Divide \frac{37}{12} into 3 equal parts. So,

\frac{37}{12}\div \:3=\frac{37}{36}

As we have to find number that is \frac{1}{3} of the way from  \:2\frac{1}{6} to \:5\frac{1}{4}, it means it must have covered 2/3 of the way. As we have divided  \frac{37}{12} into 3 equal parts, which is \frac{37}{36}

Therefore, \frac{37}{36} is the number that is  \frac{1}{3} of the way from  \:2\frac{1}{6} to \:5\frac{1}{4}.

<h2>                        Question # 9</h2>

Answer:

\left(2x+3\right) is in the form dx+\:e.

Step-by-step Explanation:

Considering the expression

2x^2+11x+12

Factor

2x^2+11x+12

\mathrm{Break\:the\:expression\:into\:groups}

\left(2x^2+3x\right)+\left(8x+12\right)

\mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2+3x\mathrm{:\quad }x\left(2x+3\right)

\mathrm{Factor\:out\:}4\mathrm{\:from\:}8x+12\mathrm{:\quad }4\left(2x+3\right)

x\left(2x+3\right)+4\left(2x+3\right)

\mathrm{Factor\:out\:common\:term\:}2x+3

\left(2x+3\right)\left(x+4\right)

Therefore, \left(2x+3\right) is in the form dx+\:e.

Keywords: factor, ratio, solution

Learn more about ratio from brainly.com/question/12906563v

#learnwithBrainly

You might be interested in
There are 680 raisins in 8 bags. If each bag has the same number of raisins, how many raisins are in 12 bags?​
Marta_Voda [28]

Answer:

1020 raisins

Step-by-step explanation:

Let's set up a proportion using the following setup:

raisins/bags= raisins/ bags

We know there are 680 raisins in 8 bags.

680 raisins/8 bags= raisins/bags

We don't know how many raisins are in 12 bags, so we can say x raisins are in 12 bags.

680 raisins/ 8 bags= x raisins / 12 bags

680/8=x/12

We want to find x. To do this, we must get x by itself.

x is being diveded by 12. The inverse of division is multiplication. Multiply both sides of the equation by 12.

12*(680/8)= (x/12)*12

12*680/8=x

12*85=x

1020=x

x= 1020 raisins

There are 1020 raisins in 12 bags.

3 0
3 years ago
Which statement describes the graph of g(x) with respect to the graph of f(x)?
butalik [34]

Answer:

hweee yvgc g. chuvu uvj u h h j j j j jvi

7 0
3 years ago
Draw the image of \triangle ABC△ABCtriangle, A, B, C under a dilation whose center is AAA and scale factor is \dfrac{1}{4} 4 1 ​
Phantasy [73]

Answer:

THE FIRST OPTION

Step-by-step explanation:

GIVE ME BRAINLIEST

3 0
3 years ago
Help me out i need help
OleMash [197]

Answer:

false, true and false

Step-by-step explanation:

4 0
3 years ago
Four buses carrying 146 high school students arrive to Montreal. The buses carry, respectively, 32, 44, 28, and 42 students. One
Naily [24]

Answer:

The expected value of X is E(X)=\frac{2754}{73} \approx 37.73 and the variance of X is Var(X)=\frac{226192}{5329} \approx 42.45

The expected value of Y is E(Y)=\frac{73}{2} \approx 36.5 and the  variance of Y is Var(Y)=\frac{179}{4} \approx 44.75

Step-by-step explanation:

(a) Let X be a discrete random variable with set of possible values D and  probability mass function p(x). The expected value, denoted by E(X) or \mu_x, is

E(X)=\sum_{x\in D} x\cdot p(x)

The probability mass function p_{X}(x) of X is given by

p_{X}(28)=\frac{28}{146} \\\\p_{X}(32)=\frac{32}{146} \\\\p_{X}(42)=\frac{42}{146} \\\\p_{X}(44)=\frac{44}{146}

Since the bus driver is equally likely to drive any of the 4 buses, the probability mass function p_{Y}(x) of Y is given by

p_{Y}(28)=p_{Y}(32)=p_{Y}(42)=p_{Y}(44)=\frac{1}{4}

The expected value of X is

E(X)=\sum_{x\in [28,32,42,44]} x\cdot p_{X}(x)

E(X)=28\cdot \frac{28}{146}+32\cdot \frac{32}{146} +42\cdot \frac{42}{146} +44 \cdot \frac{44}{146}\\\\E(X)=\frac{392}{73}+\frac{512}{73}+\frac{882}{73}+\frac{968}{73}\\\\E(X)=\frac{2754}{73} \approx 37.73

The expected value of Y is

E(Y)=\sum_{x\in [28,32,42,44]} x\cdot p_{Y}(x)

E(Y)=28\cdot \frac{1}{4}+32\cdot \frac{1}{4} +42\cdot \frac{1}{4} +44 \cdot \frac{1}{4}\\\\E(Y)=146\cdot \frac{1}{4}\\\\E(Y)=\frac{73}{2} \approx 36.5

(b) Let X have probability mass function p(x) and expected value E(X). Then the variance of X, denoted by V(X), is

V(X)=\sum_{x\in D} (x-\mu)^2\cdot p(x)=E(X^2)-[E(X)]^2

The variance of X is

E(X^2)=\sum_{x\in [28,32,42,44]} x^2\cdot p_{X}(x)

E(X^2)=28^2\cdot \frac{28}{146}+32^2\cdot \frac{32}{146} +42^2\cdot \frac{42}{146} +44^2 \cdot \frac{44}{146}\\\\E(X^2)=\frac{10976}{73}+\frac{16384}{73}+\frac{37044}{73}+\frac{42592}{73}\\\\E(X^2)=\frac{106996}{73}

Var(X)=E(X^2)-(E(X))^2\\\\Var(X)=\frac{106996}{73}-(\frac{2754}{73})^2\\\\Var(X)=\frac{106996}{73}-\frac{7584516}{5329}\\\\Var(X)=\frac{7810708}{5329}-\frac{7584516}{5329}\\\\Var(X)=\frac{226192}{5329} \approx 42.45

The variance of Y is

E(Y^2)=\sum_{x\in [28,32,42,44]} x^2\cdot p_{Y}(x)

E(Y^2)=28^2\cdot \frac{1}{4}+32^2\cdot \frac{1}{4} +42^2\cdot \frac{1}{4} +44^2 \cdot \frac{1}{4}\\\\E(Y^2)=196+256+441+484\\\\E(Y^2)=1377

Var(Y)=E(Y^2)-(E(Y))^2\\\\Var(Y)=1377-(\frac{73}{2})^2\\\\Var(Y)=1377-\frac{5329}{4}\\\\Var(Y)=\frac{179}{4} \approx 44.75

8 0
4 years ago
Other questions:
  • Solve for x. 18 ÷ x = -2 x =
    9·1 answer
  • A cafeteria manager needs to know how many apples and bananas to to order. He asked students to choose either an apple or a bana
    11·1 answer
  • What is 0.6(r 0.2)=1.8
    11·2 answers
  • 5. The base area of a prism is 150 square feet. Its height is 8 feet.
    10·1 answer
  • Find the solution of this system of equations<br> 4x - 2y = 0<br> -X - 2y = -25
    8·2 answers
  • Find the difference.
    9·2 answers
  • Need help on number 12 not 11 plz help
    13·2 answers
  • 2. Two lines intersect at E. Find the value of x<br><br> Helpppp I will give Brainly
    7·1 answer
  • I WILL GIVE BRAINLIEST<br> And more points please answer
    6·2 answers
  • Six percent of computer chips produced by Cheapo Chips are defective. Each month a random sample of 200 chips manufactured that
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!