1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
4 years ago
9

Please answer all three

Mathematics
1 answer:
alexdok [17]4 years ago
5 0
<h2>                        Question # 7</h2>

Answer:

We conclude that the statement B is true. The solution is also attached below.

Step-by-step Explanation:

As the inequality graphed on the number line showing that solution must be   < x    (-∞, 3] U [5, ∞)

So, lets check the statements to know which statement has this solution.

Analyzing statement A)

x^2-3x+5>\:0

\mathrm{Write}\:x^2-3x+5\:\mathrm{in\:the\:form:\:\:}x^2+2ax+a^2

2a=-3\quad :\quad a=-\frac{3}{2}

\mathrm{Add\:and\:subtract}\:\left(-\frac{3}{2}\right)^2\:

x^2-3x+5+\left(-\frac{3}{2}\right)^2-\left(-\frac{3}{2}\right)^2

\mathrm{Complete\:the\:square}

\left(x-\frac{3}{2}\right)^2+5-\left(-\frac{3}{2}\right)^2

\mathrm{Simplify}

\left(x-\frac{3}{2}\right)^2+\frac{11}{4}

So,

\left(x-\frac{3}{2}\right)^2>-\frac{11}{4}

Thus,

x^2-3x+5>0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:\mathrm{True\:for\:all}\:x\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Therefore, option A) is FALSE.

Analyzing statement B)

(x + 3) (x - 5) ≥ 0

x^2-2x-15\ge 0

\left(x+3\right)\left(x-5\right)=0       \left(Factor\:left\:side\:of\:equation\right)

x+3=0\:or\:x-5=0

x=-3\:or\:x=5

So

x\le \:-3\quad \mathrm{or}\quad \:x\ge \:5

Thus,

\left(x+3\right)\left(x-5\right)\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-3\quad \mathrm{or}\quad \:x\ge \:5\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-3]\cup \:[5,\:\infty \:)\end{bmatrix}

Therefore, the statement B is true.

Solution is also attached below.

Analyzing statement C)

x^2+2x-15\ge 0

\mathrm{Factor}\:x^2+2x-15:\quad \left(x-3\right)\left(x+5\right)

So,

x\le \:-5\quad \mathrm{or}\quad \:x\ge \:3

x^2+2x-15\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-5\quad \mathrm{or}\quad \:x\ge \:3\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-5]\cup \:[3,\:\infty \:)\end{bmatrix}

Therefore, option C) is FALSE.

Analyzing statement D)

- 3 < x < 5

-3

Therefore, option D) is FALSE.

Analyzing statement E)

None of the above

The statement E) is False also as the statement B represents the correct solution.

Therefore, from the discussion above, we conclude that the statement B is true. The solution is also attached below.

<h2>                          Question # 8</h2>

Find the number that is \frac{1}{3} of the way from \:2\frac{1}{6} to \:5\frac{1}{4}.

Answer:

Therefore, \frac{37}{36} is the number that is  \frac{1}{3} of the way from  \:2\frac{1}{6} to \:5\frac{1}{4}.

Step-by-step Explanation:

\mathrm{Convert\:mixed\:numbers\:to\:improper\:fraction:}\:a\frac{b}{c}=\frac{a\cdot \:c+b}{c}

So,

2\frac{1}{6}=\frac{13}{6}

5\frac{1}{4}=\frac{21}{4}

As the length from \frac{21}{4} to \frac{13}{6} is

\frac{21}{4}-\frac{13}{6}=\frac{37}{12}

Now Divide \frac{37}{12} into 3 equal parts. So,

\frac{37}{12}\div \:3=\frac{37}{36}

As we have to find number that is \frac{1}{3} of the way from  \:2\frac{1}{6} to \:5\frac{1}{4}, it means it must have covered 2/3 of the way. As we have divided  \frac{37}{12} into 3 equal parts, which is \frac{37}{36}

Therefore, \frac{37}{36} is the number that is  \frac{1}{3} of the way from  \:2\frac{1}{6} to \:5\frac{1}{4}.

<h2>                        Question # 9</h2>

Answer:

\left(2x+3\right) is in the form dx+\:e.

Step-by-step Explanation:

Considering the expression

2x^2+11x+12

Factor

2x^2+11x+12

\mathrm{Break\:the\:expression\:into\:groups}

\left(2x^2+3x\right)+\left(8x+12\right)

\mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2+3x\mathrm{:\quad }x\left(2x+3\right)

\mathrm{Factor\:out\:}4\mathrm{\:from\:}8x+12\mathrm{:\quad }4\left(2x+3\right)

x\left(2x+3\right)+4\left(2x+3\right)

\mathrm{Factor\:out\:common\:term\:}2x+3

\left(2x+3\right)\left(x+4\right)

Therefore, \left(2x+3\right) is in the form dx+\:e.

Keywords: factor, ratio, solution

Learn more about ratio from brainly.com/question/12906563v

#learnwithBrainly

You might be interested in
PLEASE HELP (easy points)
Citrus2011 [14]

Answer:

the first one i think

Step-by-step explanation:

5 0
3 years ago
Convert 24% to a fraction in simplest form.
Morgarella [4.7K]
You can think of "per cent" as meaning "divided by 100". Thus
.. 24% = 24/100
This fraction can be reduced by removing a factor of 4 from numerator and denominator:
.. 24% = 24/100 = 6/25
7 0
4 years ago
Cual es la potencia de base 3 que corresponde al producto 3 elevado a 3,3elevao a menos 2y 9 elevado a menos
icang [17]
Hehe r shahwbe ruehebrusiwb radiate r turbo ruw
5 0
3 years ago
6th grade math , help me please :)
vovangra [49]

Answer:B

Step-by-step explanation:

5 0
4 years ago
Find the value of x that makes the quadrilateral a parallelogram. Please
bogdanovich [222]

Answer:

x has no value

Step-by-step explanation:

me+you=20

6 0
3 years ago
Other questions:
  • What does (-7)^2 eaqual??
    10·1 answer
  • Can someone help me plz??
    13·1 answer
  • When factored, the trinomials x2 + 4x − 21 and x2 + 11x + 28 have one binomial factor in common. What is this factor?
    15·1 answer
  • Expand and simplify x(x − 3)(x + 5)
    5·1 answer
  • if a certain number is added to both the numerator and denominator of the fraction 7/9, the result is 5/7. find the number.
    12·2 answers
  • 30t - 20=70 two step equations
    8·2 answers
  • Which is the simplified form of the expression<br><br> 2<br> (2-3)(x+3)(2)<br> (4-2)(x4)(13)<br> ?
    7·1 answer
  • Can someone answer this?
    13·1 answer
  • Help please <br><br><br><br> Show two different ways to factor<br> -2x - 10
    5·1 answer
  • HELP ME PLZ!!!!! ..................................
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!