Answer:
Step-by-step explanation:
We are solving for the segment of AB. Note that it is a line segment, so there will be end points, those being A(-4, 5) & B(2, -5).
Use the following distance formula:
<em />
<em> </em>

Let:
Point B(2 , -5) = (x₁ , y₁)
Point A(-4 , 5) = (x₂ , y₂)
Plug in the corresponding numbers to the corresponding variables.

Simplify. Remember to follow PEMDAS. First, solve the parenthesis, then the powers, then add, and then finally square root.

Simplify:
![d = \sqrt{136} = \sqrt{2 * 2 * 2 * 17} = \sqrt[2]{17 * 2} = \sqrt[2]{34}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B136%7D%20%3D%20%5Csqrt%7B2%20%2A%202%20%2A%202%20%2A%2017%7D%20%20%3D%20%5Csqrt%5B2%5D%7B17%20%2A%202%7D%20%3D%20%5Csqrt%5B2%5D%7B34%7D)
is your answer.
~