1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
3 years ago
7

A single shelf holds 27 books. On one particular shelf, 8 books are best sellers. If you choose to read 3 of them randomly, what

is the probability all 3 chosen are best sellers? Give your answer as an exact fraction and reduce the fraction as much as possible.
Mathematics
2 answers:
zhuklara [117]3 years ago
6 0

Answer:

The probability of all chosen be the best:

                                             \frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}

                                                        =\frac{56}{2952}

To determine:

Step-by-step explanation:

If you choose to read 3 of them randomly, what is the probability all 3 chosen are best sellers?

Information Fetching and Solution Steps:

  • A single shelf holds 27 books.
  • On one particular shelf, 8 books are best sellers.
  • We have to choose to read 3 of them randomly

The formula to find the number of possible combinations

of 3 books from 27 books where order doesn't matter

                                 C\left(n,k\right)=\frac{n!}{k!\left(n-k\right)!}

So,

                                  \:\:C\left(27,\:3\right)=\frac{27!}{3!\left(27-3\right)!}

                                                  =\frac{27!}{3!24!}

                                                  =\frac{27\cdot 26\cdot 25}{3!}

And

The formula for the number of combinations of 3 vest sellers from 8 books will be:

                                  C\left(8,\:3\right)=\frac{8!}{3!\left(8-3\right)!}

                                                =\frac{8!}{3!5!}

                                                =\frac{8\cdot 7\cdot 6}{3!}

So, the probability of all chosen be the best:

                                             \frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}

                                                        =\frac{56}{2952}

Keywords: probability, combination

Learn more about combination from brainly.com/question/12725706

#learnwithBrainly

Schach [20]3 years ago
5 0

Answer:

\large\boxed{\large\boxed{{\text{Probability all 3 chosen are best sellers}=56/2,925}}}

Explanation:

<u>1. Number of possible combinations</u>

The number of possible combinations of 3 books from 27 books, whre the order does not matter, is given by the combinatory formula:

         C(n,k)=\frac{n!}{k!(n-k)!}

        C(27,3)=\frac{27!}{3!(27-3)!}=\frac{27!}{3!24!}=\frac{27\cdot 26\cdot 25}{3!}

<u>2. Number of combinations of 3 bestsellers from 8 books that are best sellers</u>

         C(8,3)=\frac{8!}{3!(8-3)!}=\frac{8!}{3!5!}=\frac{8\cdot 7\cdot 6}{3!}

<u>3. Probability of all chosen are best sellers</u>

   \text{Probability of all chosen are best sellers}=\frac{\text{# combinations of 3 best sellers}}{\text{# total combinations}}

   \text{Probability of all chosen are best sellers}=\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}

    \text{Probability of all chosen are best sellers}=\frac{336}{17,550}\\\\  \text{Probability of all chosen are best sellers}=\frac{56}{2,925}

You might be interested in
Angles 1 and 2 are complementary. If angle 1 = 35, then what is the measure of angle 2?
enot [183]

Answer:

doge

Step-by-step explanation:

EAnswers avatar

░░░░░░░░░▄░░░░░░░░░░░░░░▄

░░░░░░░░▌▒█░░░░░░░░░░░▄▀▒▌

░░░░░░░░▌▒▒█░░░░░░░░▄▀▒▒▒▐

░░░░░░░▐▄▀▒▒▀▀▀▀▄▄▄▀▒▒▒▒▒▐

░░░░░▄▄▀▒░▒▒▒▒▒▒▒▒▒█▒▒▄█▒▐

░░░▄▀▒▒▒░░░▒▒▒░░░▒▒▒▀██▀▒▌

░░▐▒▒▒▄▄▒▒▒▒░░░▒▒▒▒▒▒▒▀▄▒▒▌

░░▌░░▌█▀▒▒▒▒▒▄▀█▄▒▒▒▒▒▒▒█▒▐

░▐░░░▒▒▒▒▒▒▒▒▌██▀▒▒░░░▒▒▒▀▄▌

░▌░▒▄██▄▒▒▒▒▒▒▒▒▒░░░░░░▒▒▒▒▌

▀▒▀▐▄█▄█▌▄░▀▒▒░░░░░░░░░░▒▒▒▐

▐▒▒▐▀▐▀▒░▄▄▒▄▒▒▒▒▒▒░▒░▒░▒▒▒▒▌

▐▒▒▒▀▀▄▄▒▒▒▄▒▒▒▒▒▒▒▒░▒░▒░▒▒▐

░▌▒▒▒▒▒▒▀▀▀▒▒▒▒▒▒░▒░▒░▒░▒▒▒▌

░▐▒▒▒▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▒▄▒▒▐

░░▀▄▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▄▒▒▒▒▌

░░░░▀▄▒▒▒▒▒▒▒▒▒▒▄▄▄▀▒▒▒▒▄▀

░░░░░░▀▄▄▄▄▄▄▀▀▀▒▒▒▒▒▄▄▀

4 0
2 years ago
Plot the x- and y-intercepts to graph the equation. y=−12x−3
Lisa [10]
X-intercept; -.25
y-intercept; -3
8 0
2 years ago
Read 2 more answers
after an art class 15% of the color pencils were missing. how many color pencils were there originally if 9 color pencils are no
NARA [144]
We know that the 15% of missing pencils is equal to 9

we can use this formula

9/x = 15/100

Then cross multiply

15x = 900

x = 60

There were orignally 60 pencils
8 0
3 years ago
HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP
Kazeer [188]

Answer:

D. (8,0), (4,0)

Step-by-step explanation:

they both on tha line

6 0
3 years ago
Corey scored 525 points in 15 games. What is the rate of points per game?<br><br> Help me pls
Oliga [24]
15 percent per game hope it helps


5 0
3 years ago
Read 2 more answers
Other questions:
  • What are the greatest common factors of 51 and 85
    14·1 answer
  • Slope-intercept from two points
    10·1 answer
  • MATH HELPLEASE. WILL GIVE BRAINLIEST!
    5·2 answers
  • What is the inverse of the function f(x) = 4x + 8?
    10·2 answers
  • Because of the commutative property of multiplication, it is true that 3/4 x 4 = 4 x 3/4
    5·1 answer
  • The area of the parallelogram is 315 square units. What is the height of the parallelogram?
    11·1 answer
  • Find the value of x.<br> 16.2<br> 0.03<br> 38.5<br> 34.8
    9·1 answer
  • A triangular pyramid and its net are shown. Rain uses Calculations below to conclude that the surface area of a triangular pyram
    7·1 answer
  • In a Gallup Poll in 2003, 590 of 1,116 randomly selected adults aged 18 and older said they had too little time for relaxing or
    6·1 answer
  • A factory produces 9236 computers and four times as many keyboards how many keyboards does the factory produce?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!